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Abstract

Nuclear extra-chromosomal DNA (ecDNA) is highly prevalent in human tumours. ecDNA amplifica-
tions can promote accessible chromatin, oncogen over-expression and imply a worse clinical prognosis.
Yet, little is known about the evolutionary process of ecDNA in human cancers. Here, we develop the
theoretical foundation of the ecDNA somatic evolutionary process combining mathematical, compu-
tational and experimental approaches. We show that random ecDNA segregation leads to unintuitive
dynamics even if ecDNA is under very strong positive selection. Patterns of inter- and intra-tumour
ecDNA and chromosomal heterogeneity differ markedly and standard approaches are not directly ap-
plicable to quantify ecDNA evolution. We show that evolutionary informed modelling leads to testable
predictions on how to distinguish positively selected from neutral ecDNA dynamics. Our predictions
describe the dynamics of circular amplicons in GBM39 cell line experiments, suggesting a 300% fit-
ness increase due to circular extra-chromosomal EGFRvII I amplifications. Our work lies the basis for
further studies to quantitate ecDNA somatic evolutionary processes.

Introduction

Recent genome profiling studies of both healthy and cancerous human tissues found a high prevalence
of nuclear extra-chromosomal DNA (ecDNA) [1, 2, 3, 4]. ecDNA occurs during episodes of chromoso-
mal instability and contributes to cancer initiation and treatment resistance [5, 6, 7, 8, 9]. Double minute
oncogene amplifications exist in 31.7% of all neuroblastoma and highly amplified extra-chromosomal
KRAS copies appear at relapse of anti-EGFR targeted therapies [1, 4, 9]. Yet, the evolutionary fade
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Figure 1. Schematics of extra-chromosomal DNA (ecDNA) population dynamics. ecDNA (circels) is randomly segregated
between daughter cells. The resulting dynamics of ecDNA is markedly different compared to chromosomal alterations. For
example, a cell can lose all ecDNA by chance, whereas other cells can acquire many copies of ecDNA. A growing cell population
naturally becomes a mix of cells with and without ecDNA. Here, we describe how the inter- and intra-tumour ecDNA hetero-
geneity resembles the underlying evolutionary dynamic process, e.g. how one may quantify fitness consequences of ecDNA.

of specific ecDNA elements within individual tumours remains unknown. It is of great interest and
practical need to develop methods to quantify ecDNA driven somatic evolutionary processes.

One major complication is the unique nature of the ecDNA somatic evolutionary process. Circular
ecDNA lacks centromeres, causing random segregation of ecDNA into daughter cells after division [5]
(Figure 1). Compared to somatic changes of chromosomal DNA, this adds additional stochasticity to
the evolutionary dynamics of ecDNA [10, 11, 12]. Consequently, patterns of inter- and intra-patient
ecDNA heterogeneity differ compared to chromosomal point mutations [13, 14, 15]. Methods that
quantify somatic evolutionary processes based on chromosomal point mutations, such as phylogenetic
trees [16, 17, 18, 19, 20, 21], ratios of synonymous and non-synonymous mutations (dN/dS) [22, 23, 24],
or site-frequency spectra [25, 26, 27, 10, 28, 29] are not directly applicable to quantify the evolutionary
dynamics of ecDNA.

Here, we discuss the stochastic dynamics of ecDNA in a growing tumour population. We show that
the random segregation of ecDNA has unintuitive consequences. For example, the frequency of cells
with ecDNA can intermittently drop, even if ecDNA conveys a high selective advantage. We present
a mathematical and computational analysis of the expected inter- and intra-tumour ecDNA hetero-
geneity under different fitness scenarios and discuss strategies to infer these scenarios from cancer
genomic data. We show that a single time point measurement at single cell resolution can be sufficient
to disentangle different somatic evolutionary scenarios. Furthermore, we compare the theoretically
predicted ecDNA heterogeneity patterns with experimental observations. Growth experiments with
the glioblastoma cell line GBM39 are consistent with very strong positive selection and an approximate
fitness increase of 300% due to circular extra-chromosomal EGFRvII I amplifications. In summary, our
work describes the stochastic population dynamics of ecDNA in a growing tumour and provides a
framework to quantify ecDNA fitness effects.
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Figure 2. ecDNA population dynamics. Comparison of average deterministic dynamics of cells a) without and b) with copies
of ecDNA. Dots show the average dynamics of neutral stochastic simulations, lines are individual realisation of the same neutral
stochastic process and dashed lines show analytical predictions. Between tumour variation is considerable, especially for small
tumour populations. c) Fraction of cells without ecDNA over time. In the neutral case s = 1 the tumour will be dominated by
cells without ecDNA, also the fitness of cells with and without ecDNA is the same. Under strong positive selection, where cells
with ecDNA have a selection advantage s = 2, the frequency of cells without ecDNA approaches 0. Even for strong positive
selection we observe a transient increase of cells without ecDNA. d) Ratio of total number of ecDNA copies and total number of
tumour cells for 10000 independent repeats of the same neutral evolutionary process. In many realisations there are as many or
more ecDNA copies than tumour cells.

Results

In the following, we integrate a mathematical analysis of the ecDNA somatic evolutionary process,
individual based stochastic computer simulations and in vitro ecDNA heterogeneity patterns from
growth experiments of the glioblastoma cell line GBM39 with the known circular extra-chromosomal
EGFRvII I amplification [1, 9]. For a better grasp on some of the peculiar properties of ecDNA evo-
lution, we first discuss deterministic ecDNA dynamics. One important distinct future of the ecDNA
evolutionary process is the random inheritance of ecDNA copies into daughter cells (Figure 1). The
probability for a daughter cell to carry k ecDNA copies upon proliferation is given by a Binomial dis-
tribution with success probability 1/2 (Figure 1 and Methods). This implies that one daughter cell
might not inherit any ecDNA by chance, which is distinctively different to the inheritance of somatic
chromosomal point mutations. Assuming a cell carries k copies of ecDNA, a daughter cell would not
inherit ecDNA with probability 2−2k. In other words, if a cell carries many copies of ecDNA, a daugh-
ter cell without ecDNA is unlikely. However, if a cell carries a single ecDNA copy, the subsequent
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probability for a daughter cell without ecDNA is 1/4. We therefore should expect a tumour to be a
mix of cells with and without ecDNA. Our results show that the exact tumour composition of cells
with and without ecDNA is stochastic especially at the early stages of tumour evolution and critically
depends on the underlying ecDNA fitness distribution.

Frequencies of cells with and without ecDNA

We now turn to the expected frequencies of cells with and without ecDNA in a growing tumour
population. We start with an analysis of neutral ecDNA dynamics. In this case the presence or absence
of ecDNA does not affect cell fitness. In a tumour with N cells, the expected frequency of cells with
ecDNA is

fN+ =
2

2 + ln N
. (1)

The frequency of cells with ecDNA fN+ decreases with an increasing tumour population N. This might
be surprising at first, given both cell populations have same fitness (Figure 2). However, while cells can
lose ecDNA N+ → N−, the reverse is not possible N− 9 N+. This asymmetry is sufficient to suppress
cells with neutral ecDNA in large and growing cell populations. This has important consequences on
the interpretation of in vitro ecDNA experiments, as the frequency of cells with ecDNA continuously
declines under neutral dynamics. For fitness inferences it will be neccessary to show significant devia-
tions from the dynamics as expected by equation (1), e.g. the frequency of negatively selected ecDNA
should drop faster.

This does not imply that neutral ecDNA elements are not detectable in tumours at diagnosis. Based on
equation (1) a tumour of 1 billion cells (109) would be composed to 91% of cells without and 9% of cells
with ecDNA. The ratio only changes marginally to 93% and 7% for a tumour with 1012 cells, which
is within the detection threshold of current sequencing approaches. In Figure 2 we show examples of
the ecDNA dynamics. The average dynamics of cells with or without ecDNA in a tumour population
is captured exactly by equation (1), but stochastic differences between individuals are considerable.
Importantly, although the number of cells carrying ecDNA is relatively small in a tumour of detectable
size, the total number of ecDNA copies is of the same order of all tumour cells (Figure 2 c&d). This is of
particular importance for genes involved in resistance evolution. Highly amplified copies of EGFR are
a common resistance mechanism in targeted therapies [30, 31, 32]. Neutral ecDNA dynamics allows
for single cells to carry many copies of ecDNA, enabling crowding effects of resistance mechanisms in
small cell populations, e.g. single cells have a higher chance to acquire multiple resistance mechanisms.
Consequently, the probability of pre-existing multi-drug resistance for genes amplified on ecDNA may
be dramatically increased compared to chromosomal resistance mechanisms.

The deterministic dynamics changes once cells with ecDNA are under positive selection. Large tu-
mours are ultimately dominated by cells with ecDNA (Figure 2c). However, even if ecDNA conveys a
very strong positive selection advantage, the dynamics remains unintuitive. The frequency of positively
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selected cells with ecDNA changes approximately as

fN+(s, t) ≈
2 + t

(
eξ(s)t − 1

)
2 + teξ(s)t

, (2)

where the exponent ξ(s) is a function of the fitness coefficient s. Although large tumours are ultimately
dominated by cells with ecDNA, cells without ecDNA initially rise in frequency and are only later
outcompeted (Figure 2c). This transient effect is probably unobservable in large tumour populations,
but may be important for cell line, organoid or xenograft experiments, urging a cautious interpretation
of ecDNA fitness assays. For example, an initial decline of the frequency of cells with ecDNA can
indicate neutral fitness, but also can be consistent with a fitness advantage. A robust experimental
inference of ecDNA fitness will require growth to sufficiently large cell populations. Furthermore,
even under very strong positive selection our model predicts the frequency of cells without ecDNA to
always be above zero and thus one expects a mixed tumour population at any stage of the evolutionary
process. As a consequence, the notion of clonal versus sub-clonal ecDNA copies becomes ambiguous
[33, 34, 35], making it more difficult to determine if ecDNA was a founder event or occurred later
during tumour evolution.

Inter- and intra-tumour heterogeneity of ecDNA

We now turn to the stochastic properties of the ecDNA dynamics. Primarily, we want to quantify
the expected inter- and intra-tumour heterogeneity. We therefore change from a deterministic two
population model to a demographic description of ecDNA dynamics, which tracks the number of
ecDNA copies in each cell at any given time (see Methods for details). This results in an infinite set
of coupled differential equations, for which a fully closed analytical solution is challenging. However,
we can derive important approximate properties of the time dependent probability distribution. For
neutral ecDNA copies, we find that the moments of the ecDNA copy number distribution in tumour
cells change in time according to

M(l)(t) ∝ tl−1. (3)

In particular, this implies that the mean number k̄ of neutral ecDNA copies remains constant k̄ =

M(1) = 1, whereas the variance σ2 of the ecDNA distribution increases linearly in time σ2 = M(2)− 1 =

t. This also explains why under neutral dynamics the expected number of ecDNA copies in a growing
tumour population is approximately the same as the number of tumour cells, despite the declining
frequency of cells with ecDNA. In addition, this implies that on average neutral ecDNA amplifica-
tions would appear copy number neutral in a standard bioinformatics Copy Number Variation (CNV)
pipeline for sufficiently large tumour bulks samples. Thus, neutral ecDNA amplifications may be more
common than generally appreciated [3]. Novel bioinformatic tools to discover circular DNA structures
help to solve some of these problems [3, 36]. Moreover, the polynomial scaling of all higher moments
shows that inter-tumour ecDNA heterogeneity is expected to increase with time.
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Figure 3. a) First and b) second moment of the ecDNA copy number distribution. In the neutral case (s = 1, grey) the mean
number of ecDNA copies remains constant and the variance increases linearly in time. Under positive selection (s = 2, blue)
the mean number of ecDNA copies increases in time. Stochastic simulations (points) are in very good agreement to theoretical
predictions of polynomial increasing moments with time (dashed lines), see Eqs. (3) and (4).

If cells with ecDNA have a fitness advantage, the moments also have a polynomial time dependence

M(l)(s, t) ∝ tl−1M(1)(s, t). (4)

However, now the first moment is not constant but increases in time t depending on the selection
coefficient s, see Methods. This difference compared to the expected constant mean number of neutral
ecDNA copies is important for fitness inferences. Correspondingly, measuring the change of the first
moments (e.g. mean and variance) of the ecDNA distribution with time can in principal inform about
the (non)-neutral nature of ecDNA amplifictions. However, this would require high resolution tempo-
rally resolved single cell information of ecDNA copies, which is sparse in current clinical practice, but
is available in in vitro experiments. With the fast development of single cell sequencing technology, a
moment based method for ecDNA fitness inference may become more suitable for clinical settings in
near future.

The lack of time resolved information on tumour evolution necessitates alternative evolutionary mea-
sures. One possibility is to quantify the expected distribution of ecDNA copies among (many) single
cells of tumours, which is inferable from single time data and thus is more suitable to test ecDNA
evolutionary dynamics in clinical practice. This is motivated by mutational site-frequency based meth-
ods in species and tumour evolution [10, 29]. There is an important distinction. The mutational site
frequency spectrum quantifies cell fractions of point mutations, whereas ecDNA copy number distri-
butions correspond to the number of cells with a certain number of ecDNA amplifications. We find
that the number of cells Nk with k ecDNA copies is expected to scale as

Nk(t) ∝
1
k

, (5)

i.e. inversely with the number of ecDNA copies. Surprisingly, for a constant fitness coefficient s (e.g. no
dosing effects of ecDNA), the dynamics among cells with ecDNA is again neutral and thus the scaling
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Figure 4. Distribution and scaling of the ecDNA copy number distribution. a) Distribution of the ecDNA copy number
distribution for neutral (grey) and positively selected (blue) ecDNA evolution for 1000 repeats of stochastic simulations for
tumours of 104 cells. Overall more cells carry copies of ecDNA if positively selected compared to the neutral case. b) The scaling
of the ecDNA distribution follows the predicted 1/k scaling (dots = stochastic simulations, lines = theoretical expectation).
However, the scaling law is the same for neutral evolution and constant positive selection and cannot discriminate neutrality
from constant positive selection.

of the ecDNA copy distribution is again given by (5). Based on equation (5) a tumour should contain
many cells with few ecDNA copies and fewer cells with many ecDNA copies (Figure 4). Stochastic
simulations confirm the theoretical prediction even for small tumours (e.g. N = 104 in Figure 4).

The difference to the neutral power law scaling of chromosomal point mutations is noteworthy. In an
exponentially growing tumour population, point mutations scale as f−2 with mutation frequency f
[13, 14, 10], whereas the ecDNA copy distribution scales as k−1 with the number of ecDNA copies k.
In addition, the scaling of the ecDNA copy number distribution alone cannot distinguish neutrality
and selection. This is different for point mutations, where the site frequency spectrum can in principal
distinguish neutrality from sufficiently strong selection [29, 37]. The scaling of the ecDNA copy number
distribution depends solely on the within dynamics of cells with ecDNA. While the scaling of the
ecDNA copy number distribution is insufficient to distinguish neutral and constant positive selection,
it can distinguish those cases from a scenario where cells with different copy numbers of ecDNA have
different fitnesses.

Shannon diversity of ecDNA distributions

A third option for an ecDNA fitness inference is to combine properties of the intra-tumour ecDNA
heterogeneity and time series information. One promising candidate is the Shannon diversity index
H of a tumour population with regard to the ecDNA distribution. We find that the Shannon diversity
depends on both, the strength of selection (fitness coefficient s) and the total time selection shapes the
composition of the tumour population. The Shannon diversity index H changes approximately as

H(k̄) ∝ ln2 [k̄] . (6)
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Figure 5. Circular extra-chromosomal EGFRvII I amplification in GBM39 is under strong positive selection. a) Shown is
the Shannon diversity index H for stochastic simulations (each dot is a single realisation of the stochastic process) for varying
degrees of selection and final sizes of the tumour population. For different fitness coefficients s, the Shannon diversity index
falls on a fixed contour (e.g. dashed line: s = 1, black line: s = 2). Furthermore, the Shannon diversity increases towards
higher values of H and k̄ if ecDNA is positively selected but remains clustered around 1 in the neutral scenario. b) Shannon
diversity index for 72 repeats of in vitro growth experiment using the glioblastoma cell line GBM39 (black dots), data from [1].
The Shannon diversity follows a quadratic logarithmic contour as predicted by theory. The dashed line shows the best fit for a
fitness advantage of s = 3, shaded area corresponds to 95% credibility intervals. Neutral ecDNA dynamics (black dashed line)
does not describe the observed patterns of Shannon diversity in the GBM39 cell line. c) Posterior distributions of approximate
bayesian fits of the parametric curve H(k̄) = a ln

[
1 + bk̄

]
to stochastic simulations under varying selection strength s (gray lines)

and GBM39 cell line experiments (red). The ABC suggests very strong positive selection for cells with ecDNA in the GBM39 cell
line (s = 3). Neutral ecDNA dynamics (s = 1, dotted line) does not describe the observed diversity.

This predicts a quadratic logarithmic dependence of the Shannon diversity index H and the mean
number of ecDNA elements k̄ per cell. This dependence is recapitulated in stochastic individual
based simulations. For numerical agreements, as shown in Figure 5a, we fit a parametrised curve
H(k̄) = a ln

[
1 + bk̄

]2 to stochastic simulations, using approximate bayesian computation (see Methods
for details).

For neutral ecDNA copies, simulations cluster at small Shannon diversity and small mean number of
copies of ecDNA per cell. Interestingly, if cells with ecDNA have a fitness advantage s, although the
logarithmic dependence is maintained, there are two major differences from the neural case. Firstly,
the curve shifts to higher diversity values compared to the neutral case. Secondly, the diversity within
a tumour of positively selected ecDNA increases in time and travels along sharply defined contours for
constant fitness coefficients s (Figure 5a). This is a direct consequence of the linearly increasing mean
number of ecDNA copies (Figure 3a). These two properties of the Shannon diversity index suggest a
principal strategy to distinguish neutral from positive selection from single time point measurements.
For neutral evolution, individual realisations of the stochastic process fall onto a uniquely parametrised
curve H(k̄) = a ln

[
1 + bk̄

]2 that clusters around a mean ecDNA copy number of k̄ = 1. In contrast,
positive selection of ecDNA leads to significant deviations form the neutral contour, shifting H to both
higher Shannon diversity and higher average ecDNA copy numbers (Figure 5).

We test this theoretical prediction of the fitness effect of ecDNA on the Shannon diversity in repeated
growth experiments of a glioblastoma cell line. In a recent publication Kirsten Turner and colleagues
quantified the ecDNA copy number distribution in an in vitro growth experiment using the glioblas-
toma cell line GBM39 with circular extra-chromosomal EGFRvII I amplification [1]. In total, 72 repeats
of the same cell line experiment were done using low pass (median coverage: 1.19x) whole genome
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sequencing data. This allowed us to quantify the contour of the Shannon diversity H for these experi-
mental repeats (Figure 5b). We find a striking consistency of theoretical expectations and experimental
observations. The cell line experiment shows a quadratic logarithmic dependence between the Shan-
non diversity and the average copy number of EGFRvII I (ecDNA element) for all experimental repeats.
Even more striking, the Shannon diversity index of the circular extra-chromosomal EGFRvII I amplifi-
cation changes along a single contour, suggesting a maintained fitness effect of the EGFRvII I amplifi-
cation across experimental repeats. The curve is shifted towards higher Shannon diversity compared to
the neutral expectation, suggesting that the extra chromosomal EGFRvII I amplification conveys a con-
siderable fitness advantage in the GBM39 glioblastoma cell line. Figure 5c shows approximate bayesian
fits (ABC) for different fitness scenarios in stochastic computer simulations and best inferences for the
GBM39 cell line. The ABC inference suggests an almost 300% fitness increase (s = 3) for cells with
compared to cells without the EGFRvII I amplification. The resulting parametric curve for s = 3 is
shown in Figure 5b (dashed red line). It recovers the experimental Shannon diversity extremely well.
In contrast, neutral ecDNA dynamics fails to describe the diversity patterns of ecDNA (black dotted
line).

Discussion

Here we developed and analysed theoretical models of ecDNA population dynamics in a growing
tumour. The random segregation of ecDNA causes surprisingly unintuitive dynamics that can be
markedly different compared to the dynamics of chromosomal point mutations. Consequently, com-
mon methods to quantify somatic evolutionary processes such as phylogenetic trees, dN/dS, or mu-
tational site frequency spectra are not directly applicable to quantify ecDNA evolutionary dynamics.
However, as we have shown here, evolutionary models of ecDNA dynamics can be constructed and
analysed. Our analysis points to a very high fitness advantage (300%) of the EGFRvII I amplification in
the GBM39 cell line. This is consistent with recent functional evidence of the EGFRvII I amplification
[1, 9], as well as clinical evidence of poor survival of patients with ecDNA amplifications [38]. It will be
highly interesting to quantify evolutionary histories of ecDNA in individual patients in future studies.

Our theoretical model of ecDNA population dynamics is of course build on assumptions. We assume
that ecDNA segregation is random and ecDNA copies are amplified (doubled) prior cell divisions.
Most importantly, we assume constant fitness. Dosed ecDNA fitness effects and their impact on ecDNA
diversity requires a more detailed analysis in follow up studies. Yet, current experimental observations
seem to support such a minimal evolutionary model. Larger experimental and/or clinical studies may
unearth observations that will require us to consider more involved evolutionary scenarios.
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Methods

Mathematical description of ecDNA dynamics

A deterministic two population model without selection

In the simplest representation of the model, we discriminate cells that do or do not carry copies of
ecDNA. We denote cells with copies of ecDNA as N+(t) and cells without copies of ecDNA with
N−(t). We can write for the change of these cells in time t

∂N−(t)
∂t

= N−(t) + ν(N+(t))N+(t) (7)

∂N+(t)
∂t

= N+(t)− ν(N+(t))N+(t) (8)

Cells with ecDNA N+ can lose all copies of ecDNA, but the reverse is not possible. ecDNA can not
gained back once lost. The function ν(N+)(t) corresponds to the at the moment undetermined loss
rate of ecDNA due to random complete asymmetric segregation, e.g. one daughter cell with k and the
other daughter cell with 0 ecDNA copies. We now look at the fraction of cells that do not carry ecDNA
f = N−

N−+N+ . It follows that

∂

∂t

(
N−

N− + N+

)
=

∂ f
∂t

= (1− f )ν(N+). (9)

Again, for now both f and ν are unknown functions. However, from the equation above we can also
write

ν(N+) = 1− 1
N+

∂N+

∂t
(10)

and thus it follows
1

1− f
∂ f
∂t

+
1

N+

∂N+

∂t
= 1. (11)

This equation can be integrated and after rearranging terms, we find the formal solution for N+(t),

N+(t) = (1− f (t))et, (12)

with initial conditions N+(0) = 1 and f (0) = 0. Assuming the tumour grows exponentially over time,
e.g. N−(t) + N+(t) = et, we get an expression for the number of cells without ecDNA

N−(t) = f et. (13)
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Stochastic simulations show that N−(t)
N+(t) = 1

2 t. It follows that the fraction of cells without ecDNA
elements in the neutral case changes as

f (t) =
t

2 + t
. (14)

in time t (time measured in generations). This also allows us to find an exact expression for the
expected loss of ecDNA copies ν(N+) within the subpopulation of cells with ecDNA N+. Returning
to equation (10) we find

ν(N+) =
1

2 + t
=

1
2 + ln N

. (15)

The rate of novel production of cells without ecDNA ν reduces with tumour size. However, the
reduction is logarithmic in tumour size N and thus approaches 0 only slowly. Even in very large
tumours, the rate is considerable, e.g. ν(N = 1012) = 0.034. Given 1012 cells this would translate to
N+ → N− ≈ 6× 1010 novel cells without ecDNA emerging from cells carrying ecDNA by chance due
to uneven ecDNA inheritance.

A deterministic two population model with selection

How will the dynamics change if cells with ecDNA are under positive selection? We therefore introduce
a selection coefficient s, where s = 1 corresponds to the neutral case and s > 1 implies a fitness
advantage. This leads to a modification of above equations and they take the form:

∂N−(s, t)
∂t

= N−(s, t) + sν(N+(s, t))N+(s, t) (16)

∂N+(s, t)
∂t

= sN+(s, t)− sν(N+(s, t))N+(s, t), (17)

With the same procedure as above we can derive a general expression that is independent of ν(N+),which
becomes

(s− 1) f +
1

1− f
∂ f
∂t

+
1

N+

∂N+

∂t
= s. (18)

Note, in the neutral case s = 1 this reduces to equation (11). This expression can be solved and we can
write

N+(t) = (1− f )est−(1−s)
∫ t

0 f (τ)dτ . (19)

Stochastic simulations suggest a power law dependence of the form

f (s, t) ≈ t
2 + teξ(s)t

. (20)

Hence, the fraction of cell with copies of ecDNA is

fN+(s, t) = 1− f (s, t) ≈
2 + t

(
eξ(s)t − 1

)
2 + teξ(s)t

. (21)
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Stochastic dynamics of ecDNA elements

We now discuss the stochastic dynamics of ecDNA elements without selection. We therefore implement
a demographic model of ecDNA, where we follow the number of cells Ni(t) that carry i copies of
ecDNA. Upon proliferation these copies are amplified and 2i copies are randomly distributed between
both daughter cells. The number of copies k in a daughter cell then follows a Binomial distribution
with success rate 1/2

B (k|n = 2i, p = 1/2) =
(

2i
k

)
1

22i . (22)

This allows us to write for the demographic model of the number of cells Nk with k copies of ecDNA

dNk(t)
dt

= −Nk(t) + 2
∞

∑
i=d k

2 e
Ni(t)

(
2i
k

)
1

22i . (23)

We can decouple population growth and demographic changes via the substitution Ni(t) = M(t)ρi(t)
such that ρi is the density with ∑∞

i=0 ρi = 1 and M(t) corresponds to the population growth. In our
case as a sanity check we can write

dM(t)
dt

= −M + 2M
∞

∑
k=0

∞

∑
i=d k

2 e
ρi

(
2i
k

)
1

22i

= −M + 2M
∞

∑
i=0

ρi
1

22i

2i

∑
k=0

(
2i
k

)
= −M + 2M

∞

∑
i=0

ρi
1

22i 22i = M, (24)

and the total cell population does growth exponentially M(t) = M(0)et. This allows us to rewrite
equation (23) for the densities ρk, which gives

dρk(t)
dt

= −2ρk(t) + 2
∞

∑
i=d k

2 e
ρi(t)

(
2i
k

)
1

22i . (25)

Moments dynamics

Equation (25) enables us to discuss the Moments dynamics of the ecDNA copy number distribution.
In general, the l-th moment of the distribution is defined as

M(l)(t) =
∞

∑
i=0

ilρi(t). (26)
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We find that the first three moments of the distribution can be calculated exactly. We furthermore give
approximate scaling expressions for all higher moments of the distribution. M(0) is just the sum over
the density and by definition constant. The first moment corresponds to the average number of ecDNA
copies per cell and we can write

dM(1)(t)
dt

= −2M(1)(t) +
∞

∑
k=0

∞

∑
i=d k

2 e
kρi

(
2i
k

)
1

22i

= −2M(1)(t) +
∞

∑
i=0

ρi
1

22i

2i

∑
k=0

k
(

2i
k

)
= −2M(1)(t) +

∞

∑
i=0

ρi
1

22i (2i)22i−1 = 0 (27)

We therefore find M(1)(t) = const and the constant is given by M(1)(0), which in most cases discussed
here is 1. For the second moment we find

dM(2)(t)
dt

= −2M(2)(t) +
∞

∑
k=0

∞

∑
i=d k

2 e
k2ρi

(
2i
k

)
1

22i

= −2M(2)(t) +
∞

∑
i=0

ρi
1

22i

2i

∑
k=0

k2
(

2i
k

)
= −2M(2)(t) +

∞

∑
i=0

ρi
1

22i (2i + (2i)2)22i−2 = M(1)(t) (28)

As we have M(1) = 1, it follows that the second moment M(2) = t increases linear in time. The general
case for the l-th moment leads to a differential equation of the form

dM(l)(t)
dt

= −2M(l)(t) +
∞

∑
j=0

ρj M
(l)
B (2j, 1/2), (29)

where M(l)
B is the l-th moment of the Binomial distribution. There are no general closed expressions

for the higher moments of the Binomial distribution. Approximate expressions can be obtained using
the moment generating function

G (z|2i, 1/2) =
(

1 + ez

2

)2i
, (30)

and the moments then become

M(l)
B =

∂l

∂zl G (z|2i, 1/2) |t=0 = 2−2i
l

∑
m=0

cm,le
mz(1 + ez)2i−m (31)
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and therefore M(l)
B = ∑l

m=0 cm,l2−m. To get expressions for the coefficients cm,l we can differentiate the
moments equation one more time and get the recursion relation

cm,l = mcm,l + (2i−m + 1)cm−1,l−1. (32)

For example, M(1)
B = i and M(2)

B = i2 + i/2. The moments of M(l)
B are polynomials over i and once

plugged back into equation (29) they become a linear combination of moments M(i) of the ecDNA
copy number distribution ρ. The maximal possible rank of the l-th moment emerging in equation (29)
is given by the maximal degree of the polynomial in M(l)

B which is given by the coefficient cl,l in above
recursion. In this case, the recursion takes the form

cl,l = (2i− l + 1)cl−1,l−1 (33)

which has the solution cl,l = (2i)!
(2i−l)! . Keeping only the coefficient with the highest power, we get

M(l)
B = il(1+O(i−1). Returning to equation (29) and using the approximate expression for M(l)

B we get

dM(l)(t)
dt

= −2M(l)(t) +
∞

∑
i=0

ρiil(1 + O(i−1)

= −2M(l)(t) + 2M(l)(t) + 2
∞

∑
i=0

ρi

[
Al−1il−1 + Al−2il−2 . . .

]
= 2Al−1M(l−1)(t) + 2Al−2M(l−2)(t) + . . . (34)

The derivative of the l-th moment depends linearly on all lower moments. Unfortunately, finding
closed solutions for all coefficients Al−k appears challenging. However, the general scaling behaviour
becomes clear, and we have

M(l)(t) ∝ tl−1 (35)

In the neutral case, the first moment remains constant and all higher moments diverge polynomial in
time. This is in agreement with individual based stochastic simulations of the ecDNA dynamics Figure
3.

Continues limit and scaling wave solution

In the following we are interested in the scaling behaviour of the ecDNA copy number distribution.
The general equation (25) considers discrete copy number states. To make further analytical progress,
we consider continues states in the following calculations. Such an approximation likely describes the
case of many ecDNA copies well, but might be inaccurate for cells with very few ecDNA copies. Under
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the continues assumption, the change of the ecDNA distribution becomes

dN(k, t)
dt

= −N(k, t) +
2√
π

∫ ∞

k
2

dy
N(y, t)√

y
e
(k−y)2

y . (36)

Where N(k, t) is the number of cells with ecDNA copy number k at time t and the Binomial distribution
in equation (25) was replaced by a Normal distribution assuming a limit of large k. Similarly, we can
write for the density

dρ(k, t)
dt

= −2ρ(k, t) +
2√
π

∫ ∞

k
2

dy
ρ(y, t)√

y
e
(k−y)2

y . (37)

Given the exponential character of the ecDNA distribution, we proceed with an ansatz in the form of
a scaling wave solution

ρ(k, t) = e−vtΩ
(
ke−vt) . (38)

Plugging Ansatz (38) back into equation (37) and setting k/2→ 0, we get

∂

∂t
e−vtΩ

(
ke−vt) = −2e−vtΩ

(
ke−vt)+ ∫ ∞

0
dye−vtΩ

(
ke−vt) 1√

y
e
(k−y)2

y . (39)

The left side of equation (39) then becomes

∂

∂t
e−vtΩ

(
ke−vt) = −ve−vtΩ

(
ke−vt)− kve−2vt ∂

∂z
Ω (z) , (40)

with z = ke−vt. For v = 2 the first terms on the right hand side of equation (39) and (40) cancel and
equation (39) becomes

− z
∂

∂z
Ω (z) =

1√
π

∫ ∞

0
dw

Ω(w)√
w

et− (w−z)2
2 e2t

, (41)

where as above z = ke−2t and w = ye−2t. With a final substitution m = (w− z)et, substituting m for w
and taking the limit t→ ∞ we get

− z
∂

∂z
Ω (z) =

1√
π

∫ ∞

−∞
dmΩ(z)

1√
z

e
−m2

z = Ω(z), (42)

with the solution
Ω(z) =

c
z

, (43)

and an undetermined integration constant c. Finally this gives for the scaling behaviour of the ecDNA
copy number distribution

ρ(k, t) = e−2tΩ (z) =
c
k

. (44)

This predicts that the number of cells with k ecDNA copies scales inversely with k. We find the same
scaling behaviour in individual based stochastic simulations of the ecDNA copy number distribution,
Figure 4.
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Dynamics of ecDNA under constant positive selection

Here, we consider the situation, where cells containing ecDNA grow with rate s > 1. Then, Eq. (23)
becomes

dNk(t)
dt

∣∣∣∣
k>0

=− sNk(t) + 2s
∞

∑
i=d k

2 e
Ni(t)B(k|2i, 1/2)

=s
[

dNk(t)
dt

∣∣∣∣
s=1

]
,

dN0(t)
dt

=− N0(t) + 2N0(t) + 2s
∞

∑
i=1

Ni(t)B(0|2i, 1/2)

=s
[

dN0(t)
dt

∣∣∣∣
s=1

]
− (s− 1)N0(t), (45)

Again, we decouple population growth and demographic changes via the substitution Ni(t) = M(t)ρi(t)
such that ρi is the density with ∑∞

i=0 ρi = 1 and M(t) corresponds to the population growth. Similar to
Eqs. (24) and (25), we get

dM(t)
dt

= sM− (s− 1)Mρ0

= s
[

dM(t)
dt

∣∣∣∣
s=1

]
− (s− 1)Mρ0,

dρk(t)
dt

∣∣∣∣
k>0

= −2sρk(t) + 2s
∞

∑
i=d k

2 e
ρi(t)B(k|2i, 1/2) + (s− 1)ρkρ0

= s
[

dρk(t)
dt

∣∣∣∣
s=1

]
+ (s− 1)ρkρ0, (46)

dρ0(t)
dt

= −2sρ0(t) + 2s
∞

∑
i=0

ρi(t)B(0|2i, 1/2)− (s− 1)ρ0(1− ρ0)

= s
[

dρk(t)
dt

∣∣∣∣
s=1

]
− (s− 1)ρ0(1− ρ0).

In the case of constant positive selection, the demographic dynamics gains additional non-linear terms
compared to the neutral case.

Taking into account these terms, we can find new moments dynamics:

dM(l)(t)
dt

= −2sM(l)(t) + s
∞

∑
j=0

ρj M
(l)
B (2j, 1/2) + (s− 1)ρ0M(l)

= s

[
dM(l)(t)

dt

∣∣∣∣∣
s=1

]
+ (s− 1)ρ0M(l). (47)
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Hence,
dM(1)(t)

dt
= (s− 1)ρ0M(1), (48)

and as a result,
M(1)(t) = e(s−1)

∫ t
0 ρ0(τ)dτ . (49)

Similarly,

dM(2)(t)
dt

= M(1) + (s− 1)ρ0M(2),

M(2)(t) = te(s−1)
∫ t

0 ρ0(τ)dτ = tM(1). (50)

Similar to Eq. (34), we can show that

M(l)(t) = Pl(t)e(s−1)
∫ t

0 ρ0(τ)dτ ∼ tl−1M(1), (51)

where Pl(t) is some polynomial over t of degree l − 1. Therefore, the power law of the moment
dynamics with incrementing powers observed for neutral selection is also preserved in the constant
selection case. However, closed expressions are more challenging, as the equation for M(1) includes
additional terms.

Shannon diversity index

For the Shannon diversity index H we can write

H = −∑
i

pi ln pi ≈ −∑
1

iNi
ln

1
iNi
≈
∫

dk̄
ln k̄

k̄
=

1
2

ln2 (k̄) (52)

The first approximation considers the scaling of the ecDNA copy distribution followed by approximat-
ing the sum by integration. We therefore find

H(k̄) ∝ ln2 (k̄) . (53)

Stochastic computer simulations recapitulate the quadratic logarithmic scaling of the Shannon diversity
index (Figure 5a).

Stochastic individual based simulations of ecDNA population dynamics

We implemented individual based stochastic computer simulations of the ecDNA population dynamics
in C++. For each cell, the exact number of ecDNA copies is recorded trough the simulation. Cells are
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chosen randomly but proportional to fitness for proliferation. The proliferation rate of cells without
ecDNA is set to r− = 1 (time is measured in generations). A fitness effect for cells with ecDNA then
corresponds to a proliferation rate r+ = s. Here s > 1 models a fitness advantage, 0 < s < 1 a
fitness disadvantage and s = 1 corresponds to no fitness difference (neutral dynamics, r+ = r−). If
a cell is chosen for proliferation, the number of ecDNA copies in that cell are doubled and randomly
distributed into both daughter cells according to a Binomial trail with success rate 1/2. If a cell carries
no ecDNA, no daughter cell inherits ecDNA. We terminate simulations at a specified cell population
size. We output the copy number of ecDNA for each cell at the end of each simulation, which allows
us to construct other quantities of interest, such as the ecDNA copy distribution, the time dynamics of
the moments, or the Shannon diversity index H.

Approximate Bayesian Computation

We implement Approximate Bayesian computation (ABC) to fit the Shannon diversity index H to
stochastic simulations of ecDNA dynamics with different fitness strength s. We run 10000 simulations
for a fixed fitness coefficient s to generate a distribution of Shannon diversity indices H in dependence
of the mean copy number distribution k̄ for each simulation. We then fit the parametric curve H(k̄) =
a ln2 [1 + bk̄

]
to each evolutionary scenario independently. Here a and b are free parameters fitted by

the ABC algorithm. We therefore choose a and b randomly from uninformed uniform distributions
(a ∈ [0, 0.3] and b ∈ [0, 200]) and reject values for which the coefficient of determination R2(H(k̄))
of the parametric curve with random parameters a and b and the simulated data set is R2 < 0.995.
This gives a posterior distribution for the parameters a and b. We do the same ABC procedure for the
Shannon diversity distribution of the GBM39 cell line experiment, with a threshold of R2(H) < 0.93.
We use the posterior parameter distributions to generate credibility intervals via bootstrapping.
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