
Appendix 1. Life cycles competition1

In the result of population dynamics described above, some life cycles become more abun-2

dant, while others go extinct. The outcome of this life cycle competition is independent on3

he resource limitation parameter (K) and is exactly the same as in the linear model without4

resource limitation at all (K →∞).5

To show this, consider the whole population describe by values xκi (t) - the number of6

groups of size i in the lineage executing life cycle κ. We can decompose this value into a7

form8

xκi (t) = X(t)fκ(t)ρκi (t), (1)9

whereX(t) is the total number of units in a population, fκ(t) is the fraction of units following10

the life cycle κ, and ρκi (t) is the fraction of them, which have a size i. Naturally,11 ∑
κ

fκ(t) = 1, (2)12

∑
i

ρκi (t) = 1. (3)13

14

The quantity fκ(t) characterizes the evolutionary success of a life cycle, and we are generally15

interested in its dynamics.16

In Eqs. (3) , the terms responsible for units growth, death, and fragmentation are linear17

with respect to xi, and therefore, these equations can be represented as18

d

dt
xi =

∑
j

Aijxj −
1

K
Xxi, (4)19

20

whereAij is some constant matrix. In particular, this equation is valid independently for each21

life cycle κ.22

Combining Eqs. (4) and (1), we get23

d

dt
(Xfκρκi ) = Xfκ

∑
j

Aijρ
κ
j −

1

K
X2fκρκi . (5)24

25

Summation over all units sizes i in Eq. (5) results with26

d

dt
(Xfκ) = Xfκ

∑
i,j

Aijρ
κ
j −

1

K
X2fκ. (6)27

28
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And after rearranging the terms29

d

dt
fκ = fκ

∑
i,j

Aijρ
κ
j −

1

K
Xfκ − fκ 1

X

d

dt
X. (7)30

31

There, summation over all life cycles provides32

1

X

d

dt
X =

∑
i,j,κ

Aijρ
κ
j f

κ − 1

K
X. (8)33

34

Plugging Eq. (8) back into Eq. (7), we finally obtain35

d

dt
fκ = fκ

(∑
i,j

Aijρ
κ
j −

∑
i,j,µ

Aijρ
µfµ

)
. (9)36

37

The dynamics of life cycles competition explicitly given by Eq. (9) is independent on the38

severity of the resources limitation K and the total number of units X . The competition of39

life cycles has the same outcome in the model without resource competition at all (K →∞).40
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Appendix 2. Linear model of life cycles evolution1

Without resource competition, the population dynamics is governed by a system of equations2

3

d

dt
x1 =− b1x1 − d1x1 + π1(κ)mb

′
mxm (1a)4

d

dt
xi =− ibixi + (i−1)bi−1xi−1 − dixi + πi(κ)mb

′
mxm for 1 < i < m (1b)5

d

dt
xm =−mb′mxm + (m− 1)bm−1xm−1 − d′mxm + πm(κ)mb

′
mxm. (1c)6

7

The equation system Eq. (1) is linear with respect to xi. Thus, it can be written as:8

d

dt
x = Ax, (2)9

where x = (x1, x2, · · · , xm)T and the matrix A is10

A =



−b1 − d1 0 0 · · · π1(κ)mb
′
m

b1 −2b2 − d2 0 · · · π2(κ)mb
′
m

0 2b2 −3b3 − d3 · · · π3(κ)mb
′
m

0 0 3b3 · · · π4(κ)mb
′
m

...
...

... . . . ...

0 0 0 · · · πm(κ)mb
′
m −mb′m − d′m


(3)11

In the long run, the solution of Eq. (2) converges to that of an exponentially growing popula-12

tion with a stable distribution, i.e.,13

lim
t→∞

x(t) = eλtw. (4)14

The leading eigenvalue λ gives the total population growth rate, and its associated right eigen-15

vector w = (w1, . . . , wm) gives the stable distribution of unit sizes.16

The leading eigenvalue determines the evolutionary success of a population. In the com-17

petition of populations utilizing different life cycles (and hence different λ), each of them will18

grow independently of the others. Eventually, the population with the largest growth rate will19

outcompete the others. Thus, natural selection would promote the life cycle that provides the20

largest λ. We call this the evolutionarily optimal life cycle.21
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Appendix 3.1

Characteristic equation for an arbitrary life cycle2

Consider a life cycle in which the number of cells in a unit increases until the maturity size3

m is reached and once the next cell is born, a unit fragments according to a partition κ of4

j′ ≤ m+ 1. The corresponding projection matrix is an m×m matrix of the form5

A =6 

−b1 − d1 0 0 0 · · · mb′mπ1(κ)

b1 −2b2 − d2 0 0 · · · mb′mπ2(κ)

0 2b2 −3b3 − d3 0 · · · mb′mπ3(κ)

0 0
. . . . . . . . . ...

0 0 0 · · · (m− 1)bm−1 mb′mπm(κ)−mb′m − d′m


.

(1)

7

8

The population growth rate is given by the leading eigenvalue λ1 ofA, i.e., the largest solution9

of the characteristic equation10

det (A− λI) = 0. (2)11

By using a Laplace expansion along the last column of A− λI, we can rewrite the left hand12

side of the above expression (i.e., the characteristic polynomial of A) as13

det (A− λI) =
m−1∑
i=1

(−1)i+mmb′mπi(κ)Mi,m + (−1)2m (mb′mπm(κ)−mb′m − d′m − λ)Mm,m14

=
m∑
i=1

(−1)i+mmb′mπi(κ)Mi,m − (mb′m + d′m + λ)Mm,m (3)15
16

where Mi,m is the (i,m) minor of A − λI. For all i = 1, . . . ,m, the minor Mi,m is the17

determinant of a block diagonal matrix, and hence equal to the product of the determinants of18

the diagonal blocks. Moreover, each diagonal block is either a lower triangular or an upper19

triangular matrix, whose determinant is given by the product of the elements in their main20

1



diagonals. We can then write21

Mi,m =
i−1∏
j=1

(−jbj − dj − λ)
m−1∏
j=i

jbj. (4)22

Substituting Eqs. (3) and (4) into Eq. (2), switching the order of the two terms and simplify-23

ing, we obtain24

− (−1)m−1 (mb′m + d′m + λ)
m−1∏
j=1

(jbj + dj + λ)25

+ (−1)m−1
m∑
i=1

mb′mπi(κ)
i−1∏
j=1

(jbj + dj + λ)
m−1∏
j=i

jbj = 0.26

27

Dividing both sides by28

(−1)m
m∏
j=1

jbj,29

we get30

mb′m + d′m + λ

mbm

m−1∏
j=1

(
1 +

dj + λ

jbj

)
31

−
m∑
i=1

b′m
bm
πi(κ)

i−1∏
j=1

(
1 +

dj + λ

jbj

)
= 0.32

33

We rewrite the factor in front of the product in the first line as34

mb′m + d′m + λ

mbm
=

(
1 +

dm + λ

mbm

)
+
m(b′m − bm) + d′m − dm

mbm
.35

36

Thus,37

m∏
j=1

(
1 +

dj + λ

jbj

)
+
m(b′m − bm) + d′m − dm

mbm

m−1∏
j=1

(
1 +

dj + λ

jbj

)
38

− b′m
bm

m∑
i=1

πi(κ)
i−1∏
j=1

(
1 +

dj + λ

jbj

)
= 0.39

40

Simplifying this, we finally obtain that the characteristic equation (2) can be written as41

Fm+1(λ) + ∆mFm(λ)− b′m
bm

m∑
i=1

πi(κ)Fi(λ) = 0, (5)42

where43

Fi(λ) =
i−1∏
j=1

(
1 +

dj + λ

jbj

)
. (6)44
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and45

∆i =
i(b′i − bi) + d′i − di

ibi
. (7)46

Note that two transformations preserve Eq. (5):47

di → di − r, d′ → d′ − r, λ1 → λ1 + r, r ≤ min(d), (8)48
49

and50

d→ sd, b→ sb,51

b′ → sb′, d′ → sd′, λ1 → sλ1, s > 0.52
53

These transformations allow us to set b1 = 1 and min(d) = 0 without loss of generality.54

Forbidden fragmentation modes55

For any environment, for any combination of the fragmentation delay, risk and fixed loss,56

the fragmentation mode having two different subsets of offspring with the same combined57

size is dominated. To prove this, we use approach similar to one used in Appendix E in [1].58

Consider positive integers m, j, k such that m + 1 ≥ 2j + k, two partitions of j, τ1 and59

τ2, such that τ1 6= τ2, and an arbitrary partition φ of k, and the following three deterministic60

fragmentation modes:61

1. κ1 = τ1 + τ2 +φ – the partition of 2j+ k ≤ m+ 1, whereby a unit fragments upon the62

increment of size from m to m + 1 into a number of offspring given by partitions τ1,63

τ2, and φ.64

2. κ2 = τ1 + τ1 +φ – the partition of 2j+ k ≤ m+ 1, whereby a unit fragments upon the65

increment of size from m to m + 1 into a number of offspring given by two partitions66

τ1 and one partition φ.67

3. κ3 = τ2 + τ2 +φ – the partition of 2j+ k ≤ m+ 1, whereby a unit fragments upon the68

increment of size from m to m + 1 into a number of offspring given by two partitions69

τ2 and one partition φ.70
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Denoting by λ(κi) the leading eigenvalue of the projection matrix induced by fragmentation71

mode κi, we can show that, for any environment, either λ(κ1) ≤ λ(κ2) or λ(κ1) ≤ λ(κ3)72

holds. Thus, a fragmentation mode with two different subsets of offspring with the same73

combined size is dominated by a mode where one of these subsets repeats twice, while the74

other one is not present.75

To prove the statement above, let us define the polynomial pi(λ) as the left hand side of76

Eq. (5) with κ = κi, so that λ(κi) is the largest root of pi(λ). We obtain77

p1(λ) = Fm+1(λ) + ∆mFm(λ)− b′m
bm

(
m∑
i=1

πi(τ1)Fi(λ) +

m∑
i=1

πi(τ2)Fi(λ) +

m∑
i=1

πi(φ)Fi(λ)

)
(9a)78

p2(λ) = Fm+1(λ) + ∆mFm(λ)− b′m
bm

(
2

m∑
i=1

πi(τ1)Fi(λ) +

m∑
i=1

πi(φ)Fi(λ)

)
(9b)79

p3(λ) = Fm+1(λ) + ∆mFm(λ)− b′m
bm

(
2

m∑
i=1

πi(τ2)Fi(λ) +

m∑
i=1

πi(φ)Fi(λ)

)
. (9c)80

81

These polynomials satisfy the following two properties. First,82

lim
λ→∞

pi(λ) =∞, (10)83

as the leading coefficient of the left hand side of (5) is given by (b1 · b2 · . . . · bmm!)−1, which84

is always positive. Second,85

p1(λ) =
p2(λ) + p3(λ)

2
. (11)86

Since λ(κ1) is a root of p1(λ), evaluating Eq. (11) at λ(κ1) leads to87

p2(λ(κ1)) = −p3(λ(κ1)).88

Hence, one of the following three scenarios is satisfied:89

(i) p2(λ(κ1)) < 0 < p3(λ(κ1)),90

(ii) p2(λ(κ1)) > 0 > p3(λ(κ1)), or91

(iii) p2(λ(κ1)) = p3(λ(κ1)) = 0.92

If p2(λ(κ1)) < 0 < p3(λ(κ1)) due to Eq. (10) and Bolzano’s theorem (if a continuous func-93

tion has values of opposite sign inside an interval, then it has a root in that interval), p2(λ) has94
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a root between λ(κ1) and∞. Therefore, λ(κ1) ≤ λ(κ2) holds, i.e. the largest root of p2(λ) is95

larger than the largest root of p1(λ). Next, let us focus on (ii): If p2(λ(κ1)) > 0 > p3(λ(κ1)),96

then λ(κ1) ≤ λ(κ3) holds. Finally, if p2(λ(κ1)) = p3(λ(κ1)) = 0, then both λ(κ1) ≤ λ(κ2)97

and λ(κ1) ≤ λ(κ3) hold.98

We conclude that either λ(κ1) ≤ λ(κ2) or λ(κ1) ≤ λ(κ3) must hold. Thus, the life cycle99

corresponding to κ1 can never lead to the highest growth rate.100
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Appendix 4. Random environments1

Uncorrelated random environments2

We numerically investigate the distribution of optimal life cycles on two sets of environments:3

random environments and random detrimental environments, which strongly disfavour mul-4

ticellular units. Both sets are explored by 10000 environments generated only once and then5

used to assess all three scenarios: delay, risk, and loss.6

In the set of random environments, each element of the division and death rates vector (b7

and d) was sampled independently from the uniform distribution U(0, 1).8

Random detrimental environments9

To construct an unbiased set of random detrimental environments we used a method adopted10

from [1]. For each environment, we initially sampled two sequences of n = 19 random11

numbers from the uniform distribution U(0, 1). Then, the first sequence has been sorted12

in descending order to form the vector of the division rates b and the second sequence has13

been sorted in ascending order to form the vector of death rates d. Thus, in all detrimental14

environments, the values of division rates monotonically decreased with the unit size, while15

the values of death rates monotonically increased. Therefore, life cycles that fragment at16

large sizes only are strongly disfavoured.17

Random beneficial environments18

The set of random beneficial environments was constructed in a similar way. There, for19

each environment, we first sampled two sequences of n = 19 random numbers from the20

uniform distribution U(0, 1). Then, the first sequence has been sorted in ascending order to21

form the vector of the increasing division rates b and the second sequence has been sorted22

in descending order to form the vector of decreasing death rates d. In the result, the largest23

possible size is the most productive and the most defended state of a multicellular unit.24

1



Random unimodal environments25

To construct the set of random unimodal environments, we again started with two sorted26

sequences of random numbers from the uniform distribution U(0, 1). Then, to construct the27

division rates vector, the largest value of the first sequence was assigned to the optimal size of28

10 cells. The second largest value was randomly assigned either to the position on the left (929

cells) or the right (11 cells). Then, the next largest value was randomly assigned to either of30

two free slots closest to 10-th position. Hence, the vector of division rates has the maximum31

at 10 cells and monotonically decreases in both directions away from it. The vector of death32

rates was constructed in the similar way, with the minimum of death rate being at the optimal33

size of 10 cells.34
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Appendix 5. Binary fragmentation and (nearly) equal split1

are overrepresented in beneficial and unimodal environments.2

Besides environments with uncorrelated random values of birth and death rates (see Fig. 43

in the main text) and detrimental environments (see Fig. 5 in the main text), we investigated4

beneficial and unimodal environments. Both demonstrated patterns qualitatively similar to5

the environments with uncorrelated random values, see Figs. 1 and 2.6

Fragmentation delay

Fr
ac

tio
n 

of
 e

nv
iro

nm
en

ts

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Fragmentation loss

Fr
ac

tio
n 

of
 e

nv
iro

nm
en

ts

0.0

0.2

0.4

0.6

0.8

1.0

0 6 12 18
Fragmentation risk

Fr
ac

tio
n 

of
 e

nv
iro

nm
en

ts

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

A B C

Binary

(Nearly) equal split

Other

Figure 1: Binary fragmentation and (nearly) equal split are overrepresented in beneficial envi-

ronments. In this case, fragmentation always occurs at the largest possible size. The fractions of each

of four classes of life cycles under (A) delay, (B) risk, and (C) loss fragmentation costs.
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Figure 2: Binary fragmentation and (nearly) equal split are overrepresented in unimodal envi-

ronments. The fractions of each of four classes of life cycles under (A) delay, (B) risk, and (C) loss

fragmentation costs.

2



Appendix 6. Only deterministic fragmentation modes can be1

evolutionarily optimal under any environment2

Following [2], the state of the population can be described by the vector x, where xi denotes3

the abundance of units of size i. All processes changing the state vector x – birth, death and4

fragmentation – occur with a constant rate. Thus, the dynamics of the population state can5

be described by a set of linear differential equations or, equivalently, by a matrix differential6

equation7

ẋ = Ax, (1)8

where A is a projection matrix defined by demographics of the population [1]. An element9

ai,j of the projection matrix describes the rate of change of the number of units of size i10

caused by processes occurring with units of size j.11

To construct the projection matrix elements, consider units of a certain size j. We denote12

by qj,κ the probability that upon the increase in size from j to j+1, the unit will fragment by13

a partition κ of j′ ≤ j+1 (where the “≤” indicates that cells can be lost upon fragmentation).14

Among these partitions we distinguish the trivial partition of j + 1 that corresponds to the15

cell division without fragmentation; we denote this by qj,(j+1). The combined probability of16

all outcomes is equal to one:17 ∑
κ

qj,κ = 1. (2)18

For deterministic life cycles, only one partition occurs in all cell clusters in a population.19

Thus, for unit sizes j up to maturity size m, the trivial partition occurs with probability one20

(qj,(j+1) = 1), while all other partitions have zero probability. Once a cell divides in a cluster21

that reached the maturity size, a certain non-trivial partition of j′ ≤ m + 1 occurs with22

probability one. In a stochastic life cycle, more than one partition has non-zero probability at23

least at one unit size.24

To show that stochastic life cycles are dominated by deterministic ones, we construct the25

projection matrix for an arbitrary stochastic life cycle. The number of cells in a unit increases26

by one cell at a time, thus no process can increase the size of a cluster by more than one unit27
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at once, so ai,j = 0 for all i > j + 1. Thus, the projection matrix may contain non-zero28

elements only in the upper right triangle (emergence of smaller units during fragmentation),29

on the main diagonal (fragmentation, cell division and death of units), and on the first lower30

subdiagonal (increment of a unit size due to a cell division).31

The first lower subdiagonal describes the rate of emergence of new larger units due to cell32

division without fragmentation. These rates are equal to the product of the number of cells in33

a unit, their division rate, and the probability the fragmentation does not occur:34

aj+1,j = jbjqj,(j+1). (3)35

The upper right triangle of the matrix describes the emergence of new units as a result of36

fragmentation of larger units. For a given partition κ and given size of the newborn unit i,37

the rate of production of new units is equal to the product of the fragmentation rate (jb′j),38

the probability to fragment according to the given partition (qj,κ), and the number of units of39

given size produced in the act of fragmentation with this partition (πi(κ)). The value of an40

element ai,j in the upper left triangle is equal to the sum of rates provided by all partitions41

available to clusters of size j,42

ai,j = jb′j
∑
κ

qj,κπi(κ). (4)43

The main diagonal aj,j describes the changes in units numbers due to cell division and44

fragmentation as well as the death of units. The first component of aj,j captures that once a45

unit of size j increase in size or fragments, the number of units of that size decreases. The46

rates of decrease are equal to jbjqj,(j+1) due to cell division and jb′j
∑

κ qj,κ due to fragmen-47

tation. The second component is provided by a fragmentation with partition κ = j+1, which48

produce units of size equal to the size of parent. This leads to an increase in the number of49

units of size j at rate jb′jqj,j+1πj(j + 1), where π1 (1 + 1) = 2 and πj (j + 1) = 1 if j > 1.50

The last component of ai,i comes from the death of units, which leads to a decrease in their51

number at rate djqj,(j+1) + d′j
∑

κ qj,κ, where the first term describes the death rate in the ab-52

sence of the fragmentation and the second term describes the death rate of fragmenting units.53
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Combined, the diagonal elements of projection matrix are54

aj,j = −jbjqj,(j+1) − jb′j
∑
κ

qj,κ + jb′jqj,j+1πj(j + 1)− djqj,(j+1) − d′j
∑
κ

qj,κ. (5)55

All elements of the projection matrix given by Eq. (3)-(5) are linear with respect to any56

probability qj,κ. As shown in [2], in this case the optimal life cycle is always deterministic,57

independent of the parameter values, such as the division and death rates and the scenario of58

the fragmentation cost.59
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