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A Mixed fragmentation modes

A mixed fragmentation mode assigns a probability qκ to each possible fragmentation pattern (or par-

tition) κ ` 2, . . . , κ ` n, where n is the maximum group size. Such probabilities satisfy
∑

κ`j qκ = 1

for j = 2, . . . , n, i.e., when growing from size j− 1 to j one of the partitions κ ` j (including staying

together without splitting, κ = j) will certainly occur. Additionally, we impose qn = 0 so that, when

growing from size n− 1 to size n, a group can no longer stay together and will necessarily fragment.

It follows that a given life cycle or fragmentation mode can be represented by a set of vectors of the

form

q =

(q2, q1+1︸ ︷︷ ︸
κ`2

), (q3, q2+1, q1+1+1︸ ︷︷ ︸
κ`3

), . . . , (qn, qn−1+1, qn−2+2, . . . , q1+1+...+1︸ ︷︷ ︸
κ`n

)

 . (1)

Pure life cycles are a particular case where splitting probabilities qκ are either zero or one, so that only

one fragmentation pattern with more than one offspring group occurs.

A mixed life cycle can be understood as a set of reactions. A number n − 1 of reactions, of the

type

Xi
di−→ 0 (2)
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model the death of groups; these are independent of the fragmentation mode. An additional number

of reactions, one per each non-zero element of the vector q, models the birth of units and the growth

or fragmentation of groups. These reactions are of the type

Xi
ibiqκ−−−→

i+1∑
j=1

πj(κ)Xj , (3)

whereby a group of size i turns into a group of size i + 1 at rate ibj , and then instantly divides with

probability qκ into offspring groups in a way described by fragmentation pattern κ ` i+1, where parts

equal to ` appear a number π`(κ) of times. These reactions depend on the life cycle, which specifies

the probabilities of fragmentation patterns. For instance, the reaction

X3
3b3q2+1+1−−−−−−→ X2 + 2X1,

stipulates that groups of size 3, which grow to size 4 at rate 3b3, will split with probability q2+1+1 into

one group of size 2 and two groups of size 1. The growth of a group without fragmentation is also

incorporated in the set of reactions given by (3). For instance, the reaction

X3
3b3q4−−−→ X4,

stipulates that groups of size 3, which grow to size 4 at rate 3b3, will not split with probability q4.

The sets of reactions (2) and (3) give rise to the system of differential equations

ẋi =

n−1∑
j=1

∑
κ`j+1

qκπi(κ)jbjxj − ibixi − dixi, i = 1, 2, . . . , n− 1, (4)

where xi denotes the abundance of groups of size i. This linear system can be represented in matrix

form as

ẋ = Ax, (5)

where x = (x1, x2, . . . , xn−1) is the vector of abundances of the groups of different size and A is a

(n− 1)× (n− 1) matrix with elements given by

ai,j = jbj
∑
κ`j+1

qκπi(κ)− δi,j (ibi + di) , (6)

where δi,j is the Kronecker delta. Since πi(κ) = 0 for κ ` j+1 and i > j+1 (a partition of a number

has no parts larger than the number), the entries of A below the subdiagonal are zero. As an example,
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consider n = 4. The projection matrix for this case is given by

A =


b1
∑
κ`2

qκπ1(κ)− b1 − d1 2b2
∑
κ`3

qκπ1(κ) 3b3
∑
κ`4

qκπ1(κ)

b1
∑
κ`2

qκπ2(κ) 2b2
∑
κ`3

qκπ2(κ)− 2b2 − d2 3b3
∑
κ`4

qκπ2(κ)

0 2b2
∑
κ`3

qκπ3(κ) 3b3
∑
κ`4

qκπ3(κ)− 3b3 − d3

 . (7)

B Mixed fragmentation modes are dominated

For any fitness landscapes, mixed fragmentation modes are dominated by at least one pure life cycle.

In other words, the optimal life cycle is pure.

To prove this result, consider the set of partitions κ ` j for a given j, fix the probabilities of

fragmentation patterns ν ` i 6= j to arbitrary values, and focus attention on the function

λj1 : Sj → R,

mapping probability distributions in the ζj-simplex Sj ⊂ Rζj (specifying the probabilities of all

partitions κ ` j) to the dominant eigenvalue λj1 of the associated projection matrix A. Our goal is to

show that, for any j, λj1 is a quasiconvex function, i.e., that

λj1(ηx1 + (1− η)x2) ≤ max
{
λj1(x1), λ

j
1(x2)

}
holds for all x1,x2 ∈ Sj and η ∈ [0, 1]. Quasiconvexity of λj1 implies that λj1 achieves its maximum

at an extreme point of Sj , i.e., at a probability distribution that puts all of its mass in a single frag-

mentation pattern. Quasiconvexity of λj1 for all j then implies that the maximum growth rate λ1 is

achieved by a pure fragmentation mode, and that mixed fragmentation modes are dominated.

To show that λj1 is quasiconvex, we restrict the function to an arbitrary line and check quasicon-

vexity of the resulting scalar function [1, p. 99]. More precisely, we aim to show that the function

f(t) = λj1 (u+ tv) ,

is quasiconvex in t for any u ∈ Sj and v ∈ Rζj such that u+ tv ∈ Sj . We hence need to verify that

f(τt1 + (1− τ)t2) ≤ max {f(t1), f(t2)} (8)

holds for τ ∈ [0, 1].
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To show this, note that the function f(t) = λj1(u + tv) is given implicitly by the largest root of

the characteristic polynomial

p(λ) = det (A− λI) , (9)

where the probabilities of fragmentation specified by u + tv appear in the (j − 1)-th column of the

projection matrix A (see Eqs. (6) and (7)).

The right hand side of Eq. (9) can be written using a Laplace expansion along the (j−1)-th column

of A− λI:

det(A− λI) =
n−1∑
i=0

(−1)i+j−1(ai,j−1 − δi,j−1λ)Mi,j−1, (10)

where δi,j−1 is the Kronecker delta and Mi,j−1 is the (i, j − 1) minor of A, i.e., the determinant of

the submatrix obtained from A by deleting the i-th row and (j − 1)-th column. Each minor Mi,j−1

is independent of t because the only entries of A that depend on t appear in the (j − 1)-th column.

Moreover, each entry ai,j−1 is either zero or a linear function of t. Hence, p(λ) is a polynomial on λ

with coefficients that are linear in t, i.e., of the form

p(λ) =
n−1∑
k=0

(αk + βkt)λ
k, (11)

for some αk, βk. Moreover, since the leading coefficient must be (−1)n−1 (the matrix A is (n− 1)×

(n− 1)), it follows that αn−1 = (−1)n−1 and βn−1 = 0.

Denote by pτ (λ), p1(λ), and p2(λ) the characteristic polynomials corresponding to, respectively,

the probability distributions given by u+ [τt1 + (1− τ)t2]v, u+ t1v, and u+ t2v. From Eq. (11),

these are given by

pτ (λ) =

n−1∑
k=0

(αk + βk [τt1 + (1− τ)t2])λk =
n−1∑
k=0

αkλ
k + [τt1 + (1− τ)t2]

n−1∑
k=0

βkλ
k, (12a)

p1(λ) =

n−1∑
k=0

(αk + βkt1)λ
k =

n−1∑
k=0

αkλ
k + t1

n−1∑
k=0

βkλ
k, (12b)

p2(λ) =
n−1∑
k=0

(αk + βkt2)λ
k =

n−1∑
k=0

αkλ
k + t2

n−1∑
k=0

βkλ
k. (12c)

Subtracting Eq. (12b) from Eq. (12a), and Eq. (12c) from Eq. (12a), we can write

pτ (λ)− p1(λ) = (t2 − t1)(1− τ)
n−1∑
k=0

βkλ
k,

pτ (λ)− p2(λ) = (t1 − t2)τ
n−1∑
k=0

βkλ
k.

5



Note that the signs of these differences are always different, i.e., either (i) pτ (λ) − p1(λ) ≥ 0 and

pτ (λ) − p2(λ) ≤ 0, or (ii) pτ (λ) − p1(λ) ≤ 0 and pτ (λ) − p2(λ) ≥ 0. In the first case, we have

p1(λ) ≤ pτ (λ) ≤ p2(λ) and in the second we have p2(λ) ≤ pτ (λ) ≤ p1(λ), i.e., for each λ, pτ (λ)

lies between p1(λ) and p2(λ), or, equivalently

pτ (λ) ≤ max {p1(λ), p2(λ)} , (13)

for all λ. Since λj1 is the largest root of p(λ), and since pτ (λ), p1(λ), and p2(λ) all have the same

sign in the limit when λ tends to infinity (their leading coefficients are all equal to αn−1 = (−1)n−1),

condition (13) implies condition (8), thus proving our claim. See Fig. A for an illustration.

C Mixing between 1+1 and 2+1 is dominated

To show that the life cycle mixing between fragmentation modes 1+1 and 2+1 with probability q

represented in vector form as

q = {(q2, q1+1), (q3, q2+1, q1+1+1)} = {(q, 1− q), (0, 1, 0)} (14)

is dominated, consider its growth rate λq1 as a function of q, as given by the solution of characteristic

equation

λq1 =
b1(1− 2q)− (d1 + d2) +

√
(d1 + d2 − (1− 2q)b1)2 + 4b1(2qb2 + (1− 2q)d2)

2
.

We have λq1(0) = λ1+1
1 and λq1(1) = λ2+1

1 . A sufficient condition for q to be dominated by either 1+1

or 2+1 is then that λq1(q) is monotonic in q. To show that this is the case, note that the derivative of λq1

with respect to q is given by

dλq1
dq

= b1

(
−1 + (2q − 1)b1 + 2b2 + d1 − d2√

((2q − 1)b1 + d1 + d2)2 + 4b1(2qb2 − (2q − 1)d2)− 4d1d2

)
,

and that such expression is equal to zero if and only if

b1 − b2 = d1 − d2 (15)

which is independent of q. It follows that λq1 is either nonincreasing or nondecreasing in q, and hence

that it attains its maximum at either q = 0, q = 1, or (when (15) is satisfied) at any q ∈ [0, 1]. Hence,

q is dominated by either 1+1 or 2+1.
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Figure A: Population growth rate λ1 is quasiconvex. Consider two fragmentation modes q1 and q2 which

differ only in the probabilities of fragmentation patterns at a single size j. Then, for any 0 ≤ τ ≤ 1 and

corresponding fragmentation mode qτ = τq1+(1− τ)q2, the polynomials p(λ) given by Eq. (9) satisfy either

p1(λ) ≤ pτ (λ) ≤ p2(λ) or p2(λ) ≤ pτ (λ) ≤ p1(λ). Thus, qτ leads to a lower growth rate than either q1

or q2, i.e., either λτ1 ≤ λ11, or λτ1 ≤ λ21 holds. Here, j = 3, q1 =
{
(0.9, 0.1), (0.5, 0.5, 0), (0, 0, 0, 1, 0)

}
,

q2 =
{
(0.9, 0.1), (0.5, 0, 0.5), (0, 0, 0, 1, 0)

}
, and τ = 0.6. The fitness landscape is given by bi = 1/i, di = 0

for all i.
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D Characteristic equation of a pure fragmentation mode

Consider the pure fragmentation mode κ ` `, whereby groups grow up to size ` and then fragment

according to fragmentation pattern κ. The projection matrix is a (`− 1)× (`− 1) matrix of the form

A =



−b1 − d1 0 · · · 0 (`− 1)b`−1π1(κ)

b1 −2b2 − d2 0
... (`− 1)b`−1π2(κ)

0 2b2 −3b3 − d3 0 (`− 1)b`−1π3(κ)

0 0
. . . . . .

...

0 0 · · · (`− 2)b`−2 (`− 1)b`−1 (π`−1(κ)− 1)− d`−1


.

The population growth rate is given by the leading eigenvalue λ1 of A, i.e., the largest solution of

the characteristic equation

det (A− λI) = 0. (16)

By using a Laplace expansion along the last column of A − λI, we can rewrite the left hand side of

the above expression (i.e., the characteristic polynomial of A) as

det (A− λI) =
`−2∑
i=1

(−1)i+`−1(`− 1)b`−1πi(κ)Mi,`−1 (17)

+ (−1)2(`−1) [(`− 1)b`−1π`−1(κ)− (`− 1)b`−1 − d`−1 − λ]M`−1,`−1

=
`−1∑
i=1

(−1)i+`−1(`− 1)b`−1πi(κ)Mi,`−1 − [(`− 1)b`−1 + d`−1 + λ]M`−1,`−1 (18)

where Mi,`−1 is the (i, ` − 1)-th minor of A − λI. For all i = 1, . . . , ` − 1, the minor Mi,`−1 is

the determinant of a block diagonal matrix, and hence equal to the product of the determinants of the

diagonal blocks. Moreover, each diagonal block is either a lower triangular or an upper triangular

matrix, whose determinant is given by the product of the elements in their main diagonals. We can

then write

Mi,`−1 =

i−1∏
j=1

(−jbj − dj − λ)
`−2∏
j=i

jbj . (19)
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Substituting Eq. (19) into Eq. (18) and simplifying, we obtain

det (A− λI) = (−1)`−2
`−1∑
i=1

(`− 1)b`−1πi(κ)

i−1∏
j=1

(jbj + dj + λ)

`−2∏
j=i

jbj

− (−1)`−2 ((`− 1)b`−1 + d`−1 + λ)

`−2∏
j=1

(jbj + dj + λ)

= (−1)`−2
`−1∏
j=1

jbj

`−1∑
i=1

πi(κ)
i−1∏
j=1

(
1 +

dj + λ

jbj

)− `−1∏
j=1

(
1 +

dj + λ

jbj

) .

Replacing this expression into the characteristic equation (16), dividing both sides by (−1)`−1
∏`−1
j=1 jbj ,

and simplifying, we finally obtain that the characteristic equation (16) can be written as

F`(λ)−
`−1∑
i=1

πi(κ)Fi(λ) = 0, (20)

where

Fi(λ) =

i−1∏
j=1

(
1 +

dj + λ

jbj

)
. (21)

Note that the following two transformations:

d→ d− r, λ→ λ+ r, r ≤ min(d),

and

d→ sd, b→ sb, λ→ sλ, s > 0.

preserve the solution of Eq. (20) This allows us to set b1 = 1 and min(d) = 0 without loss of

generality.

E Fragmentation modes are dominated by binary splitting

We can show that, for any fitness landscape, binary fragmentation achieves a larger growth rate than

splitting into more than two offspring groups. To prove this, consider (i) positive integers m, j, and k

such thatm > j+k, (ii) an arbitrary partition τ ` m−j−k, and (iii) the following three fragmentation

modes:

1. κ1 = j + k + τ ` m, whereby a complex of size m fragments into one complex of size j, one

complex of size k, and a number of offspring complexes given by partition τ .
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2. κ2 = (j+ k)+ τ ` m, whereby a complex of size m fragments into one complex of size j+ k,

and a number of offspring complexes given by partition τ .

3. κ3 = j + k ` (j + k), a binary splitting fragmentation mode whereby a complex of size j + k

fragments into two offspring complexes: one of size j, and one of size k.

Fragmentation mode κ1 leads to a number of offspring groups equal to

n1 = 2 +

m−j−k∑
`=1

π`(τ),

fragmentation mode κ2 to a number of offspring groups equal to

n2 = 1 +

m−j−k∑
`=1

π`(τ) = n1 − 1,

and fragmentation mode κ3 to a number of offspring groups equal to two. Denoting by λi1 the growth

rate of fragmentation mode κi, we can show that, for any fitness landscape, either λ11 ≤ λ21 or λ11 ≤ λ31

holds, i.e., a fragmentation mode with more than two parts is dominated by either a fragmentation

mode with one part less or by a fragmentation mode with exactly two parts. By induction, this implies

that the optimal life cycle is always one within the class of binary fragmentation modes.

To prove that either λ11 ≤ λ21 or λ11 ≤ λ31 holds, let us denote by pi(λ) the characteristic polynomial

associated to mode κi, as given by the left hand side of Eq. (20) after the replacement κ = κi. The

growth rate λi1 of mode κi is hence the largest root of pi(λ). The polynomials p1(λ), p2(λ), and p3(λ)

are then given by

p1(λ) = Fm(λ)−
m−j−k∑
`=1

π`(τ)F`(λ)− Fj(λ)− Fk(λ), (22a)

p2(λ) = Fm(λ)−
m−j−k∑
`=1

π`(τ)F`(λ)− Fj+k(λ), (22b)

p3(λ) = Fj+k(λ)− Fj(λ)− Fk(λ). (22c)

These polynomials satisfy the following two properties. First,

lim
λ→∞

pi(λ) =∞, (23)

as the leading coefficient of the left hand side of Eq. (20) is always positive. Second, we can write

p1(λ) = p2(λ) + p3(λ). (24)
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Figure B: The population growth rate induced by a fragmentation mode with more than two offspring

groups is dominated. Consider the characteristic polynomials pi(λ1) for partitions κ1 = 2+1+1, κ2 = 3+1

and κ3 = 2 + 1. Left: Fitness landscape b = (1, 1, 1.4), d = (0, 0, 0). Since p2(λ11) < 0, κ1 is dominated

by κ2 (λ11 < λ21 holds). Center: Fitness landscape b = (1, 2.6 −
√
1.3, 1.4), d = (0, 0, 0). Since p1(λ11) =

p1(λ
2
1) = p1(λ

3
1), κ1 is weakly dominated by κ2 (λ11 ≤ λ21 holds). Right: Fitness landscape b = (1, 1.9, 1.4),

d = (0, 0, 0). Since p3(λ11) < 0, κ1 is dominated by κ3 (λ11 < λ31 holds).

Now, evaluating Eq. (24) at λ11, and since p1(λ11) = 0, it follows that p2(λ11) = −p3(λ11). Hence, only

one of the following three scenarios is satisfied: (i) p2(λ11) < 0 < p3(λ
1
1), (ii) p2(λ11) = p3(λ

1
1) = 0, or

(iii) p2(λ11) > 0 > p3(λ
1
1). If p2(λ11) < 0 < p3(λ

1
1), and by Eq. (23) and Bolzano’s theorem, λ11 ≤ λ21

holds. Likewise, if p2(λ11) > 0 > p3(λ
1
1), then λ11 ≤ λ31 holds. Finally, if p2(λ11) = p3(λ

1
1) = 0,

then both λ11 ≤ λ21 and λ11 ≤ λ31 hold. See Fig. B for a graphical illustration of these arguments. We

conclude that either λ11 ≤ λ21 or λ11 ≤ λ31 must hold, which proves our result.

F Optimality maps for n = 4

For n = 4 there are four pure fragmentation modes: 1+1, 2+1, 2+2, and 3+1. From Eq. (20), their

characteristic polynomials are respectively given by

p1+1(λ) = F2(λ)− 2F1(λ), (25a)

p2+1(λ) = F3(λ)− F2(λ)− F1(λ), (25b)

p2+2(λ) = F4(λ)− 2F2(λ), (25c)

p3+1(λ) = F4(λ)− F3(λ)− F1(λ). (25d)

The optimality maps shown in Fig. 3 of the main text were obtained by comparing the largest
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root of these characteristic polynomials, which we computed numerically. For fecundity landscapes,

we tested fitness landscapes of the form {b,d} = {(1, b2, b3), (0, 0, 0)} with b2 and b3 taken from a

rectangular grid of size 300 by 300 with b2 ∈ [0, 5] and b3 ∈ [0, 5]. For viability landscapes, we tested

fitness landscapes of the form {b,d} = {(1, 1, 1), (5, d2, d3)}with d2 and d3 taken from a rectangular

grid of size 300 by 300 with d2 ∈ [0, 10] and d3 ∈ [0, 10].

The boundaries between areas of optimality can still be computed analytically. They are given by

the fitness landscapes at which two fragmentation modes have the same population growth rate.

The following are the boundaries between areas of optimality under fecundity fitness landscape

(assuming b1 = 1 for simplicity):

• Between fragmentation modes 1+1 and 2+1: b2 = 1, b3 < 1.

• Between fragmentation modes 1+1 and 3+1: b3 = 2
3

(
1 + 1

2b2

)
, b2 < 1.

• Between fragmentation modes 2+1 and 2+2: b3 =
ζ(2b2+ζ)
3(2b2−ζ) , where ζ =

√
1+8b2−1

2 , and b2 > 1.

• Between fragmentation modes 3+1 and 2+2: b3 = 2
3b2 (2b2 − 1)

(
2− 1

2b2

)
and b2 > 1

The following are the boundaries between areas of optimality under viability fitness landscape

(assuming d1 = 0 for simplicity):

• Between fragmentation modes 1+1 and 2+1: d2 = 0, d3 > 0.

• Between fragmentation modes 1+1 and 3+1: d3 = 3
d2+3 − 1, d2 > 0.

• Between fragmentation modes 2+1 and 2+2: d3 = 32−d2−ζ
2+d2+ζ

− ζ, where ζ =

√
d22−2d2+9−1−d2

2 ,

and d2 < 0.

• Between fragmentation modes 3+1 and 2+2: d3 = 32−d2−ζ
2+d2+ζ

− ζ, where ζ =

√
d22−6d2+1+1−d2

2

and d2 < 0

G Costly fragmentation

For costly fragmentation, some cells are lost upon the fragmentation event. In this case the biological

reactions are still given by Eqs. (2) and (3). However, under costly fragmentation the sum of sizes of

offspring groups is smaller than the size of the parent group. Therefore, in Eq. (3), κ is a partition
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of i′ ≤ i + 1 (and not strictly of i + 1 as it was under costless fragmentation). Indeed, i′ = i + 1

in the case of trivial partitions with one part (when a group grows without splitting), but i′ < i + 1

for nontrivial partitions with two or more parts (where the group grows in size by one cell and then

splits). In this latter case, i′ = i − π + 2 (where π is the number of offspring groups) for the case of

proportional costs, and i′ = i for the case of fixed costs.

To illustrate the difference in the available sets of partitions for each of the three scenarios we

investigate (costless fragmentation, fragmentation with proportional cost, fragmentation with fixed

cost), consider the following possible reactions for a 4-cell group growing into a 5-cell group. For

costless fragmentation, we have

X4
4b4q5−−−→ X5 5 ` 5 (no cell is lost),

X4
4b4q4+1−−−−−→ X4 +X1 4 + 1 ` 5 (no cell is lost),

X4
4b4q3+2−−−−−→ X3 +X2 3 + 2 ` 5 (no cell is lost),

X4
4b4q3+1+1−−−−−−→ X3 + 2X1 3 + 1 + 1 ` 5 (no cell is lost),

X4
4b4q2+2+1−−−−−−→ 2X2 +X1 2 + 2 + 1 ` 5 (no cell is lost),

X4
4b4q2+1+1+1−−−−−−−−→ X2 + 3X1 2 + 1 + 1 + 1 ` 5 (no cell is lost),

X4
4b4q1+1+1+1+1−−−−−−−−−→ 5X1 1 + 1 + 1 + 1 + 1 ` 5 (no cell is lost).

For fragmentation with fixed cost, we have

X4
4b4q5−−−→ X5 5 ` 5 (no cell is lost),

X4
4b4q3+1−−−−−→ X3 +X1 3 + 1 ` 4 (1 cell is lost),

X4
4b4q2+2−−−−−→ 2X2 2 + 2 ` 4 (1 cell is lost),

X4
4b4q2+1+1−−−−−−→ X2 + 2X1 2 + 1 + 1 ` 4 (1 cell is lost),

X4
4b4q1+1+1+1−−−−−−−−→ 4X1 1 + 1 + 1 + 1 ` 4 (1 cell is lost).

Finally, for fragmentation with proportional cost, we have

X4
4b4q5−−−→ X5 5 ` 5 (no cell is lost),

X4
4b4q3+1−−−−−→ X3 +X1 3 + 1 ` 4 (1 cell is lost),

X4
4b4q2+2−−−−−→ 2X2 2 + 2 ` 4 (1 cell is lost),

X4
4b4q1+1+1−−−−−−→ 3X1 1 + 1 + 1 ` 3 (2 cells are lost).
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The combined probability of all outcomes of aggregate growth must be equal to one. In the case

of costless fragmentation, this condition has been given by
∑

κ`i+1 qκ = 1 for i = 1, . . . , n − 1.

For costly fragmentation this condition changes to
∑

κ`i′ qκ = 1 for i = 1, . . . , n − 1, with i′ as

defined above. The expressions for the system of differential equations and the projection matrix for

general mixed strategies (Eqs. (4) and (7)) are changed accordingly. For pure fragmentation modes,

the projection matrix given in the main text and the characteristic equation given in Eq. (20) remain

valid, but κ is no longer a partition of i+ 1 but of i′ as defined above.

H With proportional costs, fragmentation modes are dominated by bi-

nary splitting

For fragmentation with proportional costs, a group fragmenting into π offspring groups incurs a cost

of π − 1 cells. In this case, similarly to the case for costless fragmentation, nonbinary fragmentation

modes are dominated by binary fragmentation modes. To prove this, consider (i) positive integers

m, j, and k such that m > j + k + 4, (ii) an arbitrary partition τ with π ≥ 2 parts such that

τ ` m− j − k − π − 2, and (iii) the following three fragmentation modes:

1. κ1 = j+ k+ τ ` m−π− 1, whereby a complex of size m fragments into one complex of size

j, one complex of size k, and π complexes given by partition τ , and π + 1 cells die.

2. κ2 = (j + k + 1) + τ ` m − π, whereby a complex of size m fragments into one complex of

size j + k + 1 and π complexes given by partition τ , and π cells die.

3. κ3 = j + k ` (j + k), a binary fragmentation mode whereby a complex of size j + k + 1

fragments into two offspring complexes (one of size j and one of size k), and one cell dies.

Note that fragmentation mode κ1 leads to π+2 offspring groups, fragmentation mode κ2 leads to π+1

offspring groups, and fragmentation mode κ3 leads to a number of offspring groups equal to two. The

rest of the proof is analogous to the one given in Appendix E for the case of costless fragmentation

and will be omitted.
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