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A Equation for the population dynamics in a matrix form7

In our model, groups grow in size and fragment. The growth of groups is governed by a set of biological8

reactions9

Xi
ibigi−−−→ Xi+1, (13)

where Xi is a groups of size i and bi is the growth rate of cells in a group of size i. After the growth of the10

group size by i+ 1, they will stay together with the probability gi, which is determined by the utilized life cycle11

and the group size.12

Group fragmentation occurs immediately after cell growth and is described by reactions in the form13

Xi
ibiqκ−−−→

i∑
j=1

πj(κ)Xj , (14)

where κ indicates the pattern of the fragmentation (for example 2+1+1), and πj(κ) indicates how many groups14

of size j are produced by fragmentation κ (e.g. if κ = 2 + 1 + 1, then π1(κ) = 2 and π2(κ) = 1). The15

probabilities qκ determine the fragmentation mode of a given life cycle.16

At each size of group multiple patterns of fragmentation are available. For instance, upon reaching size of 317

cells, a group may fragment into a two-cellular group and independent cell (pattern 2+1), or into three solitary18

cells (pattern 1+1+1). To denote that a group of the size i can fragment according to the pattern κ, we write19

κ ` i, so in previous example 2+1 ` 3 and 1+1+1 ` 3. At each size, the sum of probabilities to stay together20

or to fragment is equal to one21

gi +
∑
κ`i+1

q(κ) = 1. (15)

The sets of reactions (13) and (14) give rise to a system of differential equations22

ẋi =

n∑
j=1

∑
κ`j+1

qκπi(κ)jbjxj − ibixi + gi−1(i− 1)bi−1xi−1, (16)

where xi denotes the abundance of groups of size i and n is the maximal size of groups present in population.23

In this study we use n = 3. The equations (16) are linear and can be represented in matrix form,24

ẋ = Ax, (17)

1



where x = (x1, x2, x3, · · · ) is the vector of group size abundances, andA is the projection matrix with elements25

are given by26

Ai,j(q, bj) = jbj

 ∑
κ`j+1

qκπi(κ)− δi,j + gjδi,j+1

 . (18)

B Numerical calculation of the growth rate in a dynamic environment27

The growth rate of a population in a dynamic environment is calculated as a slope of a linear fit of the logarithm28

of the population size vs. time. Each simulation of a growing populations begins with a population of a random29

composition, where the abundances of each group size (solitary cells, 2- and 3-cellular groups) are drawn30

independently from a uniform distribution U(0, 1). Using random initial states, we were able to explicitly31

measure the impact of stochasticity in the initial conditions on the calculated value of the population growth32

rate (see below). Also, since our initial state include multicellular complexes, we could correctly handle the33

population dynamics of the coexisting life cycle.34

For every season of the dynamic environment, the eigenvalues (λi) and eigenvectors (ei) of the projection35

matrix A are computed. After that, the vector of the initial composition of the population was decomposed into36

the basis of the eigenvectors. Eventually, each component of such decomposition exponentially grows in time37

independently with a rate given by the eigenvalue associated with the eigenvector. This allows us obtain the38

population composition at the end of the season, or at any moment during the season as39

x(t̃) =
∑
i

ci(0)eie
λi t̃, (19)

where t̃ is time, ci(0) is the weight of the eigenvector ei in the initial state of population x(0), and the sum runs40

over all eigenvalues.41

The population composition achieved at the end of the first season is used as an initial composition at42

the beginning of the second season (where eigenvalues and eigenvectors of the projection matrix are totally43

different). To calculate the growth rate in the dynamic environment (Λ), we apply two alternating seasons for a44

long time and compute population sizes. The best linear fit of the logarithm of population size gives the growth45

rate Λ of population.46

The random initial conditions are the source of variation in Λ between independent calculations with iden-47

tical parameters (D, q, total simulation time). The longer is the total simulation time, the less is the variation48

in Λ caused by the initial conditions. The question is, how long this should be? For the purpose of our study,49

Λ must be obtained with an accuracy allowing a reliable comparison of growth rates with differences in frag-50

mentation probabilities of 0.05. This value is the size of the lattice on which the optimization is performed, see51

appendix C.52

Preliminary simulations show that such a difference in fragmentation probabilities induce a relative differ-53

ence between growth rates of the order of 10−2. The next set of preliminary simulations show that to achieve54

such an accuracy, the total simulation time should last for at least 10 units of time (t̃). This (very roughly)55

corresponds to 10 generations in a population utilizing the unicellular life cycle 1+1. In our simulations, we56

used the limit of 30 time units. Furthermore, we investigate regimes, where the cycle of seasons was longer than57

30 time units (so called long seasons regime). For these regimes, simulations must run longer, to accomodate at58

least several seasons turnovers. Therefore, to adequately compute Λ in these cases as well, we also require our59

calculations to last for minimum 20 full cycles of seasons change.60
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C Numerical optimization of the growth rate61

For a given dynamic environment D, we find the local optima of the function Λ(q,D) varying62

q = (q1+1; q2+1, q1+1+1; q3+1, q2+2, q2+1+1, q1+1+1+1). The set of fragmentation probabilities for a maxi-63

mum size of 4 has to satisfy the conditions q1+1 ≤ 1, q2+1+q1+1+1 ≤ 1 and q3+1+q2+2+q2+1+1+q1+1+1+1 =64

1. To investigate this six-dimensional space of parameters, we set up a lattice with spacing 0.05. The value of65

Λ(q,D) is computed for all nodes of this lattice. The whole lattice contains 213·222·23
12 ≈ 8.6 · 106 nodes, and66

the computation Λ in each of them would be inefficient. Thus, we implemented a hill climbing optimization67

algorithm. The optimization begins from a random node. Then, the values of Λ in the neighboring nodes are68

calculated, and the node with largest Λ is chosen for the next step. Once, there is no neighboring node with a69

larger Λ, the vector q is considered as a candidate to the local optimum. Each single optimization procedure70

returns a single local optimum. However, multiple local optima may exist. To capture them, we repeat the71

optimization procedure 100 times with random initial values of q.72

Note that if the fragmentation always happens at a group size l smaller than the maximum group size n, the73

fragmentation probabilities qκ at larger group sizes l′ > l do not affect Λ. For l = 4, the single exceptional74

case is the coexisting life cycle q1+1 = 1 and q2+1 + q1+1+1 = 0 and q2+2 = 1. However, while the value75

of Λ is independent on fragmentation probabilities at unavailable sizes, the gradient of the growth rate can still76

depend on them. For instance, at S = (1, 4, 2), the parameter combination q1 = (0; 1, 0; 0.1, 0.3, 0.55, 0.05)77

corresponds to the pure life cycle 2+1 and does not have a neighboring nodes with larger Λ. However, the lattice78

node q2 = (0; 1, 0; 0, 1, 0, 0) corresponds to the same pure life cycle 2+1 but has a neighboring node with larger79

Λ, so the optimization procedure can further improve the growth rate. To handle this issue we added the second80

round of optimization. If the originally found candidate for the local optimum satisfies q2+1 + q1+1+1 = 1 or81

q1+1 = 1, we initialize the set of optimizations starting from the same life cycle but with probability mass of82

unused partitions altered to be concentrated in each of these partitions. So, in the example above, after the hill83

climber algorithm reports the above-mentioned q1 as being the candidate to the local optimum, we set up four84

additional instances of optimization starting from:85

• qa = (0; 1, 0; |1, 0, 0, 0)86

• qb = (0; 1, 0; |0, 1, 0, 0)87

• qc = (0; 1, 0; |0, 0, 1, 0)88

• qd = (0; 1, 0; |0, 0, 0, 1)89

where we separated probabilities of fragmentation at size 4 by a vertical line for the convenience of presentation.90

Once the local optimum in a given simulation is found, we clear the fragmentation mode by removing91

unused fragmentation probabilities. We take into account the following cases:92

• If q1+1 = 1, then groups of size larger than 1 do not emerge, so all other probabilities can be discarded93

independently on their values, except the coexisting life cycle qC (see main text).94

• If q2+1 + q1+1+1 = 1, then groups of size larger than 2 do not emerge, such that the probabilities95

q3+1, q2+2, q2+1+1, q1+1+1+1 can be discarded independently on their values.96

• If q2+1 + q1+1+1 = 0 and q2+2 = 1, then groups of size 1 do not emerge, so the probability q1+1 can be97

discarded independently on its value, except the coexisting life cycle.98

• If q1+1 = 1 and q2+1 + q1+1+1 = 0 and q2+2 = 1, then both 1+1 and 2+2 life cycles are executed99

simultaneously, since these are coexisting life cycles. This case is kept intact.100
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D Colour code of the optimality maps101

The optimality maps represent the character of the evolutionarily optimal life cycle(s) as a function of the control102

parameters T and t. Each pixel of the map corresponds to a single dynamic environment D = {S1, τ1;S2, τ2}103

and its colour represents the set of evolutionary optimal life cycles found in the given environment. Each104

optimization results in a single locally optimal fragmentation mode q. For each dynamic environment, we105

performed 100 such runs leading to a list of 100 local optima (containing repeated entries). We denote the106

probability of the fragmentaiton pattern κ to be executed in the evolutionarily optimal life cycle found in i-th107

optimization as qκ,i. Here, we describe how we mapped a list of qκ,i into the colour of pixel on the optimality108

map.109

We started with our fragmentation pattern colour code introduced in Fig. 1. The list of colours was generated110

to have the maximal perception distance between seven colours using web tool111

http://tools.medialab.sciences-po.fr/iwanthue/. Colours we used are:112

• Pattern 1+1, hex code #992b10, dark red113

• Pattern 2+1, hex code #ff9a58, light orange114

• Pattern 1+1+1, hex code #00abfd, blue115

• Pattern 3+1, hex code #c46bf4, soft violet116

• Pattern 2+2, hex code #6ba400, dark green117

• Pattern 2+1+1, hex code #cd5a87, moderate pink118

• Pattern 1+1+1+1, hex code #b3713f, brown119

Then we compute the average occurrence of each fragmentation pattern across all found optima as 〈qκ〉 =120

1
100

∑
i qκ,i, where κ stands for a fragmentation pattern and summation goes over all 100 entries of the local121

optima list.122

After that, we convert the found “average” life cycle into the pixel colour. To construct the colour of a123

mixed life cycle q = (q1+1; q2+1, q1+1+1; q3+1, q2+2, q2+1+1, q1+1+1+1), we evaluate the weighted sum of124

these base colours in RGB space. The weight of each colour wκ is equal to the product of the corresponding125

pattern frequency by the probability that a group of size one cell smaller will grow and not fragment:126

wκ = qκ

(
1−

∑
κ′`s−1

qκ′

)
(20)

This weighting procedure provides an illustration of actual frequencies of fragmentation pattern occurrences.127

Consider a mixed life cycle q = (0.95; 0, 1; 0, 0, 0, 0), where 95% of independent cells immediately fragment128

upon growth and the remaining 5% form bi-cellular cluster, which fragment upon the next division as 1+1+1.129

The frequency of this pattern is q1+1+1 = 1, however, it is responsible for the minority of reproduction events130

in the population. Our colour mixing rule assigns a weight of the colour corresponding to κ = 1 + 1 + 1 equal131

to q1+1+1(1− q1+1) = 0.05, which is more appropriate in this situation.132

E Long seasons dynamical environment screening133

Evolution of fragmentation modes in the long seasons regime can lead to many different outcomes. To inves-134

tigate the spectrum of evolutionarily optimal life cycles and their combinations, we performed screening in a135
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wide range of dynamic environments. In this screening, the parameters of the first season S1 = (1, b12, b
1
3)136

were sampled from the set {0.25, 0.75, 1.25, . . . , 4.75}, ten values in total. Altogether, this created 100 dif-137

ferent S1. The parameters of the second season S2 = (1, b22, b
2
3) were independently sampled from a uniform138

distribution U(0, 5). For each S1, 400 different S2 were generated. For each combination of S1 and S2,139

41 equally spaced values of log(t) in the range [−1, 1] were assessed numerically. In total, we investigated140

100 × 400 × 41 ≈ 1.6 · 106 dynamic environments. Out of these, the vast majority contained only a single141

evolutionarily optimal pure life cycle. A coexistence between several local optima has been observed in approx-142

imately 13% of dynamic environments, see Table 1. Mixed life cycles were found among local optima in 1.9%143

of cases, and only in 0.06% of considered dynamic environments, these executed more than two fragmentation144

patterns. Multiple fragmentation patterns (1+1+1, 2+1+1, or 1+1+1+1) were found to be even rarer, 0.04%.145

Single pure Multiple Mixed Mixed life cycles Non-binary Total
life cycle local optima life cycle with 3+ patterns fragmentation

Counts 1422195 214524 31794 958 701 1640000
Fraction 0.867 0.131 0.0193 0.000584 0.000427 1.0

Table 1: The majority of evolutionarily optimal life cycles in the long seasons regime are single pure life cycles.

F Stability of pure life cycles in the long seasons regime146

Here we consider evolutionary optimality of pure life cycles, where only one fragmentation pattern occurs. A147

pure fragmentation mode is locally optimal when adding a small chance to fragment with any other pattern leads148

to a decrease in the population growth rate Λ. The stability analysis of a pure life cycle can then be reduced to149

a set of pairwise comparisons.150

In each comparison, we examine the stability of the focal pure fragmentation mode qf against the perturba-151

tion in the direction of the alternative pure fragmentation mode qp. To do this, we consider a mixed life cycle152

executing only two fragmentation patterns: the focal κf and the perturbation κp. Such a life cycle is charac-153

terized by the fragmentation mode qf,p(x), where patterns κf and κp occur with probabilities x and 1 − x,154

respectively. The pure focal fragmentation mode qf is obtained at x = 1 and is locally stable with respect to155

admixture of qp if the growth rate is increasing near x = 1, ∂Λ(qf,p(x),D)
∂x |x=1 ≡ Λ′x|x=1 > 0.156

To find the ratio of season lengths ts at which the life cycle qf becomes (un)stable against qp, consider the157

long seasons approximation:158

Λ(qf,p,D) ≈ t

1 + t
λ(qf,p,S1) +

1

1 + t
λ(qf,p,S2). (21)

and therefore159

Λ′x(qf,p,D)|x=1 ≈
ts(κf , κp)

1 + ts(κf , κp)
λ′x(qf,p,S1)|x=1 +

1

1 + ts(κf , κp)
λ′x(qf,p,S2)|x=1 = 0. (22)

Solving this equation with respect to ts(κf , κp), we get160

ts(κf , κp) = − λ′x(qf,p(x),S2)

λ′x(qf,p(x),S1)

∣∣∣∣
x=1

. (23)

Note that Eq. (23) links properties of a pure life cycle in a dynamic environment (ts) with growth rates of mixed161

life cycle in a static environment (λ′x).162
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If both seasons favours qf over qp, then ts < 0, and qf is locally stable for any t. If both seasons favours163

qp over qf , then ts < 0, and qf is locally unstable for any t. If the first season favours qf over qp, and the164

second season is opposite [λ(qf ,S1) > λ(qp,S1) and λ(qf ,S2) < λ(qp,S2)], then qf is locally stable at165

t > ts. Finally, if the relation is inverse [λ(qf ,S1) < λ(qp,S1) and λ(qf ,S2) > λ(qp,S2)], then qf is locally166

stable at t < ts.167

The pure fragmentation mode qf is locally optimal if it is locally stable against all other pure fragmentation168

modes qp 6=f . Therefore, the range of t where qf is locally optimal is given by the intersection of stability169

regions obtained from each pairwise assessment.170

G Stability of mixed life cycles in the long seasons regime171

In this section, we outline the range of season length ratios t promoting mixed life cycles. An arbitrary mixed172

fragmentation mode (q) is a local optimum of the growth rate Λ, when all fragmentation patterns κ fulfils the173

conditions174 
∂Λ
∂qκ

∣∣∣
q
< 0 if κ is not executed (qκ = 0),

∂Λ
∂qκ

∣∣∣
q

= 0 and ∂2Λ
∂q2κ

∣∣∣
q
< 0 if κ is mixed with other patterns of the same size (0 < qκ < 1),

∂Λ
∂qκ

∣∣∣
q
> 0 if κ is the only executed pattern of its group size (qκ = 1).

(24)

The majority of mixed life cycles we found features only two fragmentation patterns, see Appendix H.175

For this case, the analysis can be significantly simplified, and we can explicitly find the range of t, where176

the mixed fragmentation modes are evolutionarily optimal. Let us consider again a pair of fragmentation177

patterns corresponding to pure fragmentation modes q1 and q2, such as S1 favours q1 and S2 favours q2178

[λ(q1,S1) > λ(q2,S1) and λ(q1,S2) < λ(q2,S2)]. Now we focus on the behaviour of the locally optimal179

mixed fragmentation mode q1,2(xm) with Λ′x|x=xm = 0 and Λ′′xx|x=xm ≤ 0, where xm 6= 1, 0.180

Above, we have shown that there are no evolutionarily optimal mixed life cycles if there is effectively a181

single season (t� 1 or t� 1). Therefore, as approaching these extreme values of t, xm either hits 0 or 1 (see182

Fig. 1A) or disappears in a saddle-node bifurcation (see Fig. 1B).183

In the first scenario, if xm converges to 1 as t increases, the internal maximum becomes the border maximum184

(evolutionarily stable pure life cycle). This happens at t = ts(κ1, κ2) by the definition of ts. However, the185

inverse is not always true; not every ts marks the transition between the border and the internal maxima, because186

the same condition is satisfied when the border maximum merges with an internal minimum. For an emergence187

of internal maximum, Λ′′xx|x=1 ≤ 0 must be satisfied at t = ts, i.e.188

Λ′′xx(q1,2(x),D)|x=1 ≈
ts(κf , κp)

1 + ts(κf , κp)
λ′′xx(q1,2(x),S1)|x=1 +

1

1 + ts(κf , κp)
λ′′xx(q1,2(x),S2)|x=1 < 0.

(25)

Using Eq. (23) and rearranging terms, we get189

−
(
λ′x(q1,2(x),S2)

λ′x(q1,2(x),S1)
λ′′xx(q1,2(x),S1)

)∣∣∣∣
x=1

+ λ′′xx(q1,2(x),S2)|x=1 < 0. (26)

If S1 promotes qf over qp while S2 promotes qp over qf , then λ′x(q1,2(x),S2) < 0, so the inequality can be190

rewritten as191

λ′′xx(q1,2(x),S1)

λ′x(q1,2(x),S1)

∣∣∣∣
x=1

<
λ′′xx(q1,2(x),S2)

λ′x(q1,2(x),S2)

∣∣∣∣
x=1

. (27)
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Figure 1: At extreme t, locally optimal mixed life cycles either become pure or disappear in a saddle-node bifurcation.
Consider a mixed life cycle executing two patterns 1+1 and 2+1, i.e. q = (x; 1, 0; 0, 0, 0, 0). In a dynamic environment given by S1 =
(1.0, 2.0, 0.1) and S2 = (1.0, 0.2, 0.1), at T � 1 and t = 0.56 (thick black lines on both panels), the maximal growth rate is obtained
at xm ≈ 0.10 (highlighted with a blue dot). A With decrease in t, the location of the optimal mixed life cycle xm goes left, until it hits
xm = 0 at ts ≈ 0.44. There is no evolutionary optimal mixed life cycles at t < ts. B With increase in t, the location of the optimal mixed
life cycle xm goes right. At the same time, the location of local minimum of Λ goes left (highlighted with green dots). At t∗ ≈ 0.62, local
maximum disappears in the saddle-node bifurcation located at x∗ ≈ 0.27 (the red dot). There is no evolutionary optimal mixed life cycles
at t > t∗.

If S1 promotes qp instead, the inequality sign is reversed. For transitions at another boundary, the same expres-192

sions should be evaluated at x = 0, instead of x = 1.193

In the scenario of the saddle-node bifurcation, the internal maximum and minimum of the growth rate merge,194

see Fig. 1B. Then, there is a critical values of x = x∗ and t ≡ t∗, at which the growth rate profile Λ(q(x),D)195

has an equilibrium which is simultaneously an inflection point:196

Λ′x(q1,2(x),D)|x=x∗ = 0,

Λ′′xx(q1,2(x),D)|x=x∗ = 0.
(28)

Under the long seasons approximation, we get197

t∗ = − λ′x(q1,2(x),S2)

λ′x(q1,2(x),S1)

∣∣∣∣
x=x∗

,

t∗ = − λ′′xx(q1,2(x),S2)

λ′′xx(q1,2(x),S1)

∣∣∣∣
x=x∗

.

(29)

Setting the two equations equal and rearranging the terms, we get198

λ′′xx(q1,2(x),S1)

λ′x(q1,2(x),S1)

∣∣∣∣
x=x∗

=
λ′′xx(q1,2(x),S2)

λ′x(q1,2(x),S2)

∣∣∣∣
x=x∗

. (30)

For the border of the second type to exists, there must be at least one x∗ satisfying Eq. (30). If none of these are199

found, such a dynamic environment promotes only pure life cycles.200
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H Growth rate of a mixed life cycle constructed by two fragmentation201

patterns in a static environment202

In this section, we present the calculation of the growth rates of the mixed life cycle utilizing exactly two203

different fragmentation patterns. This value is a solution of the characteristic equation of the projection matrix,204

which we aim to derive. We begin with the projection matrix of a pure life cycle (see [Pichugin et al., 2017] for205

details),206

A =



−b1 0 · · · 0 (`− 1)b`−1π1

b1 −2b2 0
... (`− 1)b`−1π2

0 2b2 −3b3 0 (`− 1)b`−1π3

0 0
. . .

. . .
...

0 0 · · · (`− 2)b`−2 (`− 1)b`−1 (π`−1 − 1)


,

where bi is the cell birth rate in a group size i, and ` is the size at which a fragmentation occurs, and πi is207

the number of groups with size i produced in a result of the fragmentation. This matrix contains non-zero208

components only at the main diagonal, the lower sub-diagonal (growth components) and the rightmost (`− 1)-209

th column (fragmentation components). To find the growth rate λ, the characteristic equation det(A− λI) = 0210

must be solved. By dividing the i-th column of A− λI by ibi, we get:211

det



−s1 0 · · · 0 π1

1 −s2 0
... π2

0 1 −s3 0 π3

0 0
. . .

. . .
...

0 0 · · · 1 −s`−1 + π`−1


= 0, (31)

where si =
(

1 + λ
ibi

)
– this notation will be used later for the convenience of the matrix presentation. The212

characteristic equation can be rewritten in a form of the characteristic polynomial:213

p(λ) = F`(λ)−
`−1∑
i=1

πiFi(λ) = 0, (32)

where214

Fi(λ) =

i−1∏
j=1

sj =

i−1∏
j=1

(
1 +

λ

jbj

)
. (33)

For instance, the growth rate of the pure life cycle 2+1 is the largest root of the polynomial:215

p2+1(λ) = F3 − F2 − F1 =

(
1 +

λ

b1

)(
1 +

λ

2b2

)
−
(

1 +
λ

b1

)
− 1 = 0.

We define a mixed life cycle q(x), as a life cycle in which an initially single-cellular group would eventually216

fragment according to κ1 with probability x and according to κ2 with probability 1−x. If we denote the size at217

which fragmentation occurs in the fragmentation pattern κi as `i, then the fragmentation mode mixed between218

two pure modes q1 and q2 is defined as219

q(x) =


xq1 + q2, if `1 < `2,

xq1 + (1− x)q2, if `1 = `2,

q1 + (1− x)q2, if `1 > `2.

(34)
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At the boundary values of x, the mixed life cycle becomes pure q(0) = q2 and q(1) = q1 (a fragmentation at220

a larger size does not happen if all groups fragment at a smaller size). Thus, the characteristic equation is given221

by222

det



−s1 0 · · · 0 π1(κ1)x 0 · · · 0 π1(κ2)

1 −s2 · · · 0 π2(κ1)x 0 · · · 0 π2(κ2)
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · −s`1−2 π`1−2(κ1)x 0 · · · 0 π`1−2(κ2)

0 0 · · · 1 −s`1−1 + π`1−1(κ1)x 0 · · · 0 π`1−1(κ2)

0 0 · · · 0 1− x −s`1 · · · 0 π`1(κ2)
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · −s`2−2 π`2−2(κ2)

0 0 · · · 0 0 0 · · · 1 −s`2−1 + π`2−1(κ2)


= 0,

where πi(κ1) (πi(κ2)) is the numbers of fragments of size i emerged in fragmentation according to the pattern223

κ1 (κ2); `1 (`2) is the size at which the fragmentation occurs in κ1 (κ2). We choose the order of pure life cycles224

in a way that `1 ≤ `2. This determinant contains non-zero elements only at the main diagonal, the first lower225

subdiagonal; and in (`1 − 1)-th and (`2 − 1)-th columns. In this case, the characteristic equation is226

p(λ, x) = xp1(λ)R(λ) + (1− x)p2(λ), where

p1(λ) = F`1(λ)−
`1−1∑
i=1

πi(q1)Fi(λ),

p2(λ) = F`2(λ)−
`2−1∑
i=1

πi(q2)Fi(λ),

R(λ) =
F`2(λ)−

∑`2−1
i=`1

πi(q2)Fi(λ)

F`1(λ)
. (35)

The characteristic polynomials p1(λ) and p1(λ) are getting from the pure life cycles q1 and q2. Note that if227

`1 = `2 (fragmentation occurs at the same size for both patterns), R(λ) = 1.228

I Growth rate of a coexisting life cycles in long seasons regime229

We consider a pair of fragmentation patterns to be coexisting, if the maximal size of groups allowed by one230

pattern is smaller than the minimal size of groups produced by another. We call the combination of these two231

fragmentation patterns a “coexisting life cycle”. Then, groups emerging in the larger fragmentation mode,232

cannot be involved in the fragmentation of the smaller mode. For a group size limit of four cells, there is233

only one coexisting pair: 1+1 and 2+2. According to Eq. (34), such a mixed life cycle is given by the set of234

probabilities q(x) = (x; 0, 0; 0, 1, 0, 0). Groups of the minimal size (one cell) fragment according to the pattern235

1+1 with probability x, and groups of size larger than 1 fragment according to the pattern 2+2 with probability236

1.237

To calculate the growth rate of the coexisting life cycle, we start from Eq. (35). In the case of an arbitrary238

coexisting life cycle, the “larger” fragmentation mode q2 does not produce groups smaller than `1, i.e. πi(q2) =239

0 for all i < `1, then the characteristic polynomial R(λ) from Appendix H becomes240

R(λ) =
p2(λ)

F`1(λ)
. (36)
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Therefore, we get241

p(λ, x) = p2(λ)

(
1− x+

xp1(λ)

F`1(λ)

)
=

p2(λ)

F`1(λ)

(
p1(λ) + (1− x)

`1−1∑
i=1

πi(q1)Fi(λ)

)
. (37)

The root of the polynomial p2(λ) is always a solution of p(λ, x), independently on x. In other words, the242

population always has an option to adopt the pure “larger” life cycle q2 for any given x. The largest root of the243

second term in Eq. (37), denoted as λ̃(x), is a increasing function of x and is not larger than the largest root of244

the polynomial p1(λ) (because the additional term is non-negative: πi(q1) ≥ 0, (1 − x) ≥ 0, and Fi(λ) > 0245

for λ > 0). At x = 1, the second term becomes exactly p1(λ), and consequently, λ̃(1) = λ(q1). The actual246

growth rate of the population in a coexisting life cycle is the maximum of λ(q2) and λ̃(x) ≤ λ(q1).247

If the season favours pure life cycle q2 over pure q1, then λ(q1) < λ(q2). Therefore, in the mixed life cycle248

q(x), the growth rate will be λ(x) = λ(q2) for any value of x. In terms of population behaviour, the population249

will execute the pure “larger” life cycle, so the value of x is irrelevant. If the season favours pure life cycle q1250

over pure q2, then λ(q1) > λ(q2). Then, the population growth will change depending on x. We define x0 as251

the point, where λ̃(x0) = λ(q2). For x < x0, λ(q2) > λ̃(x), and thus the population growth becomes λ(q2),252

similar to the previous case. For x > x0, the population growth becomes λ̃(x) > λ(q2). It follows that during253

the season favouring q1, the largest growth rate is achieved by the life cycle maximizing λ̃(x), which happens254

at x = 1.255

Next, we proceed to the dynamic environment and consider a long season regime, where the overall growth256

rate Λ is a weighted sum of growth rates in each of the seasons. If S1 promotes 1+1 and S2 promotes 2+2,257

then the growth in the first season (where λ(q1+1) > λ(q2+2)) is achieved at x = 1 and the growth rate in the258

second season (where λ(q1+1) < λ(q2+2)) is independent on x. Overall, the optimal life cycle in any such259

environment is q(x)|x=1 = (1; 0, 0; 0, 1, 0, 0).260

J Long season approximation in near neutral environments for small261

life cycles n = 2262

Here, we consider the evolutionarily optimal life cycles of groups not exceeding size two in near neutral en-263

vironments. Such a population has an access to only three fragmentation patterns: 1+1, 2+1, and 1+1+1. An264

arbitrary mixed life cycle q can be characterized by the probabilities of fragmentation according to 1+1 (u) and265

2+1 (v): q = (q1+1; q2+1, q1+1+1) = (u; v, 1− v). The corresponding projection matrix is (see Eq. (18))266

A(q,S) =

(
−1 + 2u 2b2(v + 3(1− v))
1− u −2b2(1− v)

)
, (38)

with b1 = 1.267

In near neutral environment D = {S1,S2, τ1, τ2} given by seasons S1 = (1, 1 + εβ) and S2 = (1, 1 + εγ)268

with season lengths τ1 = Tt/(1 + t) and τ2 = T/(1 + t), respectively. The growth rate of a population in the269

long seasons regime is given by270

Λ ≈ t

1 + t
λ(q,S1) +

1

1 + t
λ(q,S2)

= 1 + ε

(
t

1 + t
λ′(q, β) +

1

1 + t
λ′(q, γ)

)
+
ε2

2

(
t

1 + t
λ′′(q, β) +

1

1 + t
λ′′(q, γ)

)
+
ε3

6

(
t

1 + t
λ′′′(q, β) +

1

1 + t
λ′′′(q, γ)

)
+O(ε4). (39)
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Note that β and γ are scalars in this case. A calculation of λ′, λ′′ and λ′′′ at S1 gives271

λ′(q, β) =
2(1− u)

5− 2u− 2v
β,

λ′′(q, β) =− 8(1− u)(2− u− v)(3− 2v)

(5− 2u− 2v)3
β2, (40)

λ′′′(q, β) =− 48(1− u)(2− u− v)(3− 2v)(7 + 2u(v − 2) + v(2v − 7))

(5− 2u− 2v)5
β3.

For S2, the results have the same form with γ instead of β.272

If both β and γ are positive (both negative), the life cycle 2+1 (1+1) is the only evolutionarily optimum in273

a dynamic environment. Thus, it is worth considering the case of β and γ having different signs. We assume274

β > 0, γ < 0, because the opposite case will give symmetric results.275

First, we consider the local optimality of pure life cycles. At t � 1, the only local maximum of Λ is the276

pure life cycle 2+1, while at t � 1, the pure life cycle 1+1 is evolutionary optimal. Supplying Eqs. (40) into277

Eq. (8), we get278

• The life cycle 1+1 is locally stable against small admixture of 2+1 at279

t < ts(1 + 1, 2 + 1) = − γβ ,280

• The life cycle 1+1 is locally stable against small admixture of 1+1+1 at281

t < ts(1 + 1, 1 + 1 + 1) = − γβ −
2
3
γ
β (β − γ)ε+O(ε2),282

• The life cycle 2+1 is locally stable against small admixture of 1+1 at283

t > ts(2 + 1, 1 + 1) = − γβ −
8
81
γ
β (β2 − γ2)ε2 +O(ε3),284

• The life cycle 2+1 is locally stable against small admixture of 1+1+1 at285

t > ts(2 + 1, 1 + 1 + 1) = − γβ + 1
3
γ
β (β − γ)ε+O(ε2),286

• The life cycle 1+1+1 is locally stable against small admixture of 1+1 at287

t > ts(1 + 1 + 1, 1 + 1) = − γβ −
6
25
γ
β (β − γ)ε+O(ε2),288

• The life cycle 1+1+1 is locally stable against small admixture of 2+1 at289

t < ts(1 + 1 + 1, 2 + 1) = − γβ −
1
25
γ
β (β − γ)ε+O(ε2).290

Combining this, the pure life cycle 1+1+1 is never associated to a local maximum of Λ. The pure life cycle 1+1291

is locally stable at t < ts(1 + 1, 2 + 1). The pure life cycle 2+1 is locally stable at t > ts(2 + 1, 1 + 1). If292

|β| > |γ|, both the pure life cycle 1+1 and the pure life cycle 2+1 are local maxima of Λ at t in the interval293

between ts(2 + 1, 1 + 1) and ts(1 + 1, 2 + 1). If |β| < |γ|, there are no evolutionary optimal pure life cycles in294

this interval of t.295

Next, we consider the local optimality of mixed life cycles composed of two fragmentation patterns. There296

are three such combinations:297

• The mixed life cycle q = (u, 1, 0) composed of 1+1 and 2+1 satisfies d
duΛ = 0, and therefore is a local298

extreme, at tl = − γβ −
γ
β (β − γ) 4(1−u)u

(3−2u)2 ε + O(ε2). This extreme is a local maximum if d2

du2 Λ < 0299

at this point. The second derivative is d2

du2 Λ = −βγ 8(3−4u)
(3−2u)5 ε

2 + O(ε3), which is negative at u > 3/4.300

The local maximum is robust against small admixtures of the remaining life cycle 1+1+1 if d
dvΛ > 0 at301

this point. The last condition leads to d
dvΛ = −βγ 4(1−u)

(3−2u)3 ε
2 + O(ε3) > 0, which is always satisfied302

for u ∈ (0, 1). Altogether, such a mixed life cycle is evolutionary optimal at t between tl|u=3/4 =303

− γβ −
1
3
γ
β (β − γ)ε+O(ε2) and tl|u=1 = − γβ +O(ε2).304
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• The mixed life cycle q = (u, 0, 1) composed of 1+1 and 1+1+1 satisfies d
duΛ = 0, and therefore is a local305

extreme, at t = − γβ −
γ
β (β − γ) 2(3+2u−2u2)

(5−2u)2 ε + O(ε2). This extreme is a local maximum if d2

du2 Λ < 0306

at this point. The second derivative is d2

du2 Λ = −βγ 11−8u
(5−2u)5 ε

2 + O(ε3), however, it is positive for all307

u ∈ (0, 1). Therefore, such a mixed life cycle is never an evolutionary optimum.308

• The mixed life cycle q = (0, v, 1− v) composed of 2+1 and 1+1+1 satisfies d
dvΛ = 0, and therefore is a309

local extreme, at t = − γβ −
γ
β (β − γ) 1−8v+4v2

(5−2v)2 ε+O(ε2). This extreme is a local maximum if d2

dv2 Λ < 0310

at this point. The second derivative is d2

dv2 Λ = −βγ 3−2v
(5−2v)5 ε

2 + O(ε3), however, it is positive for all311

v ∈ (0, 1). Therefore, such a mixed life cycle is never an evolutionary optimum.312

Only one pairwise combination of fragmentation patterns gives rise to the evolutionary optimal mixed life cycle.313

Finally, we consider mixed life cycles composed of all three fragmentation patterns. Such a life cycle is314

an evolutionary optimum if simultaneously d
duΛ = 0 and d

dvΛ = 0. If we denote the values of t, where these315

equalities are satisfied by tu and tv respectively, it can be shown that tu− tv = − γβ (β−γ) 1
5−2u−2v ε+O(ε2) >316

0. Therefore, it is impossible to find the value of t, where both conditions are simultaneously satisfied (i.e.317

tu = tv). Therefore, there is no evolutionary optimal mixed life cycles with three components.318

Altogether, the areas of optimality of all found life cycles is presented in Fig. 5.319

K Growth rate of the population in near neutral environments is inde-320

pendent on the seasons turnover period T321

Consider an arbitrary pure or mixed fragmentation mode q and an arbitrary near neutral dynamic environment322

D = {S1,S2, τ1, τ2}, such as the projection matrices in each season are A1 and A2, respectively (see Eq. (18)).323

In each season, the dynamics of the population within each season is governed by equations324

ẋ = A1x,

ẋ = A2x. (41)

Let the population composition at the initial moment t̃ = 0 be described by the vector of abundances x(0).325

Then, the solutions of these equations are326

x(t̃) = eA1 t̃x(0),

x(t̃) = eA2 t̃x(0), (42)

where the matrix exponent is defined as327

eA =

∞∑
k=0

Ak

k!
. (43)

After a single cycle of seasons, the population composition is equal to328

x(τ1 + τ2) = eA2τ2eA1τ1x(0). (44)

In the stationary regime of the dynamic environment, the population returns to the same composition after a full329

round of seasonal changes. However, the population size increases by the factor eΛ(τ1+τ2). Thus,330

eA2τ2eA1τ1x(0) = eΛ(τ1+τ2)x(0). (45)
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In near neutral environments, cell birth rates are close to one, bj = 1+εβj with ε� 1. Since any projection331

matrix is linear with respect to cell birth rates bj (see Eq. (18)), we conclude that projection matrices A1 and332

A2 can be presented in a form333

A1 = A0 + εB1,

A2 = A0 + εB2, (46)

where A0 is the projection matrix given by fragmentation mode q and completely neutral environment bj = 1.334

In the neutral environment, the growth rate of any life cycle is equal to one. Therefore, in the near neutral335

environment, the growth rate is close to one, i.e.336

Λ = 1 + εΛ1 +O(ε2). (47)

The evolutionarily optimal life cycle is the one maximizing Λ1, so we aim to find this value.337

To do that, we use an ansatz for x(0) in Eq. (45),338

x(0) = x0 + εx1 +O(ε2), (48)

where x0 is the right eigenvector of A0 associated with the eigenvalue λ = 1, i.e. A0x0 = x0. Plugging339

Eqs. (46), (47), and (48) into the left hand side of Eq. (45) and discarding terms smaller than O(ε), we have340

eA2τ2eA1τ1x(0) ≈ e(A0+εB2)τ2e(A0+εB1)τ1(x0 + εx1)

=

∞∑
k=0

(A0 + εB2)
kτk2

k!

∞∑
m=0

(A0 + εB1)
mτm1

m!
(x0 + εx1)

≈
∞∑
k=0

τk2
k!

(Ak0 + ε[Ak−1
0 B2 +Ak−2

0 B2A0 + . . .+A0B2A
k−2
0 +B2A

k−1
0 ])

×
∞∑
m=0

τm1
m!

(Am0 + ε[Am−1
0 B1 +Am−2

0 B1A0 + . . .+A0B1A
m−2
0 +B1A

m−1
0 ])(x0 + εx1)

≈
∞∑
k=0

∞∑
m=0

τk2
k!

τm1
m!

(Am+k
0 + ε[Ak0{Am−1

0 B1 + . . .+B1A
m−1
0 }+ {Ak−1

0 B2 + . . .+B2A
k−1
0 }Am0 ])(x0 + εx1)

≈ eA0τ2eA0τ1x0 + ε

(
eA0τ2eA0τ1x1 +

∞∑
k=0

∞∑
m=0

τk2
k!

τm1
m!

Rkmx0

)
, (49)

where we defined Rkm = Ak0(Am−1
0 B1 + . . .+B1A

m−1
0 ) + (Ak−1

0 B2 + . . .+B2A
k−1
0 )Am0 . Also, plugging341

Eqs. (46), (47), and (48) into the right hand side of Eq. (45) and discarding terms smaller than O(ε), we have342

eΛ(τ1+τ2)x(0) ≈ e(1+εΛ1)(τ1+τ2)(x0 + εx1)

≈ eτ1+τ2(1 + εΛ1(τ1 + τ2))(x0 + εx1)

≈ eτ1+τ2x0 + εeτ1+τ2(Λ1(τ1 + τ2)x0 + x1). (50)

Combining Eqs. (49) and (50), we have343

eA0τ2eA0τ1x0 + ε

(
eA0τ2eA0τ1x1 +

∞∑
k=0

∞∑
m=0

τk2
k!

τm1
m!

Rkmx0

)
= eτ1+τ2x0 + εeτ1+τ2(Λ1(τ1 + τ2)x0 + x1).

(51)
Terms not containing ε cancel each other, because eA0τx0 = eτx0, eA0τ2eA0τ1x0 = eτ1+τ2x0. So, Eq. (51) is344

reduced to345

eA0τ2eA0τ1x1 +

∞∑
k=0

∞∑
m=0

τk2
k!

τm1
m!

Rkmx0 = eτ1+τ2(Λ1(τ1 + τ2)x0 + x1). (52)
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Next, we multiply Eq. (52) from the left by the left eigenvector of A0, i.e. by the vector w0, satisfying w0A0 =346

w0 (and w0e
A0τ = eτw0). Terms containing x1 cancel each other because w0e

A0τ2eA0τ1x1 = eτ1+τ2(w0x1).347

Then, Eq. (52) becomes348

∞∑
k=0

∞∑
m=0

τk2
k!

τm1
m!

w0Rkmx0 = eτ1+τ2Λ1(τ1 + τ2)(w0x0), (53)

and thus we can find Λ1 as349

Λ1 =

∑∞
k=0

∑∞
m=0

τk2
k!
τm1
m! w0Rkmx0

eτ1+τ2(τ1 + τ2)(w0x0)
. (54)

Now consider the expression w0Rkmx0. Since w0 and x0 are left and right eigenvectors of A0 associated350

with unit eigenvalue, then w0A
a
0BA

b
0x0 = w0Bx0. Therefore,351

w0Rkmx0 = w0[Ak0(Am−1
0 B1 + . . .+B1A

m−1
0 ) + (Ak−1

0 B2 + . . .+B2A
k−1
0 )Am0 ]x0

= mw0B1x0 + kw0B2x0. (55)

Then, the nominator in Eq. (54) is352

∞∑
k=0

∞∑
m=0

τk2
k!

τm1
m!

w0Rkmx0 = w0B1x0

∞∑
k=0

∞∑
m=0

τk2
k!

mτm1
m!

+ w0B2x0

∞∑
k=0

∞∑
m=0

kτk2
k!

τm1
m!

= eτ1+τ2(τ1w0B1x0 + τ2w0B2x0) (56)

Plugging this result into Eq. (54), we get353

Λ1 =
τ1w0B1x0 + τ2w0B2x0

(τ1 + τ2)(w0x0)
=
tw0B1x0 + w0B2x0

(1 + t)(w0x0)
, (57)

where we used τ1 = tT
1+t and τ2 = T

1+t . This shows that in near neutral environments, the growth rate of an354

arbitrary life cycle q given by 1 + εΛ1 depends on the seasons proportion t but is independent on the seasons355

turnover period T .356

L Parameters of presented simulations examples357

In this manuscript, we presented a number of optimality maps in various dynamics environments with different358

combinations of seasons. For the clarity of organisation, here we list birth rates of all dynamic environments359

illustrated in this paper.360

• For the graphs in Fig. 2, we used τ1 = τ2 = 2.5, S1 = (1, 3, 0.5), and S2 = (1, 0.5, 3).361

• For the map in Fig. 3B, we used S1 = (1, 2, 2) and S2 = (1, 1, 4).362

• For the map in Fig. 3C, we used S1 = (1, 3.0, 0.5) and S2 = (1, 0.2, 0.5).363

• For the map in Fig. 3D, we used S1 = (1, 1.5, 1.55) and S2 = (1, 0.5, 0.55).364

• For the map in Fig. 6A, we used S1 = (1, 1.3, 0.95) and S2 = (1, 0.95, 1.3).365

• For the map in Fig. 6B, we used S1 = (1, 4, 0.5) and S2 = (1, 0.5, 4).366

• For the map in Fig. 6C, we used S1 = (1, 0.27, 2.73) and S2 = (1, 2.73, 0.27).367

• For the map in Fig. 6D, we used S1 = (1, 1.101, 2.612) and S2 = (1, 0.917, 0.182).368
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