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The mode of reproduction is a critical characteristic of any species, as it has a

strong effect on its evolution. As any other trait, the reproduction mode is

subject to natural selection and may adapt to the environment. When the

environment varies over time, different reproduction modes could be optimal

at different times. The natural response to a dynamic environment seems to

be bet hedging, where multiple reproductive strategies are stochastically

executed. Here, we develop a framework for the evolution of simple multi-

cellular life cycles in a dynamic environment. We use a matrix population

model of undifferentiated multicellular groups undergoing fragmentation

and ask which mode maximizes the population growth rate. Counterintui-

tively, we find that natural selection in dynamic environments generally

tends to promote deterministic, not stochastic, reproduction modes.
1. Introduction
The ability of organisms to reproduce is a paramount feature of life, and a great

diversity of reproduction modes is observed in nature. Even the simplest organ-

isms, such as colonial bacteria and primitive multicellular species, reproduce in

various ways: by producing unicellular propagules [1], by fragmentation of the

colony into two [2] or multiple multicellular pieces [3] and by the dissolution of

the organism into independent cells [4]. A variety of reproduction modes orig-

inates from different external and internal conditions [5–9]. The choice of the

reproduction mode has a major impact on the later evolution of the species’

traits. This aspect is especially important for organisms at the brink of multicel-

lular life: the larger the organism grows, the more complex it can become [10].

However, it also means longer developmental time, which might incur

additional risks; larger propagules require less protection against unfavourable

environmental conditions [11], while smaller propagules can be produced in

larger quantities [12,13]. Thus, the question of the evolution of reproduction

modes of simple multicellular organisms and life cycles in general has

paramount importance for our understanding of the history of life on Earth.

Natural selection favours the life cycle, which uses the opportunities and

handles challenges faced by species the best. The evolution of life cycles

among complex organisms is generally slow and with rare exceptions [14]

occurs unnoticed. At the same time, primitive organisms under selection

pressure demonstrate an extraordinary ability to adapt their reproductive strat-

egies. Initially, unicellular Chlamydomonas reinhardtii experimentally subjected

to selection for fast sedimentation in liquid media has evolved into multicellular

clusters reproducing via a single-cell bottleneck [15]. Similar experiments with

budding yeast Saccharomyces cerevisiae show the evolution into snowflake-

shaped clusters reproducing by fragmentation [16]. Selection pressure imposed

by another source, e.g. the threat from predators, has a similar effect [17]. It was

shown that even prokaryotic unicellular life forms are capable of evolving col-

lective-level traits within a matter of months [18]. These examples show that

natural selection can drive the adaptation of reproductive strategies.

The evolution of life cycles has been investigated from the theoretical per-

spective as well. Roze & Michod [19] have studied the evolution of

propagule size and found that smaller propagules can be selected since they
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are more efficient in the elimination of selfish mutants. Tarnita

et al. [20] considered the ‘staying together’ mode of group for-

mation, where cell colonies or organisms grow only by means

of division of cells already comprising them (without immigra-

tion). There, Tarnita et al. investigated conditions at which the

multicellular life cycle characterized by stochastic detachment

of unicellular propagules outperforms the unicellular life

cycle. Recently, we performed an extensive investigation of

the optimal modes of group reproduction [21]. It turns out

that only life cycles with a regular schedule of reproduction are

favoured by natural selection. However, all these studies con-

sider only constant environments, where external conditions

do not change with time.

It has been shown that the fluctuations of the environ-

ment have a significant influence on the life cycles of many

species. Natural examples range from the day–night cycles

driving photosynthetic activity [22], to the spawning of

marine invertebrates synchronized with the lunar cycle

[23,24], to the alteration of seasons affecting the availability

of food, energy spendings, amount of daylight, etc. [25–27].

An impact of the environmental changes on the life cycle

has also been investigated in evolutionary experiments

[15,16,18,28]; and even the changes imposed by human inter-

ventions in nature [29] have been reported to have an effect

on life cycles.

The hallmark phenomenon observed in dynamic environ-

ments is bet-hedging, where organisms combine different

reproductive strategies [30,31]. Bet-hedging comes in two fla-

vours: in ‘between-clutch’ bet-hedging, different organisms

of the same species use different reproductive strategies. An

example of this is the blooming of the succulents which

must coincide with a hardly predictable wet season in the

desert [32,33]. Different plants of the same species have

different blooming times, so those that catch the wet season

will successfully reproduce, while others perish. Similar pro-

cesses occur in many other plants including crops [34]. In

‘within-clutch’ bet-hedging, offspring produced together

have diverse properties [35]. An example is the diversity

among egg size in bird clutches: in mild seasons all eggs

are hatched, while in harsh seasons only the larger eggs

with more nutrients can survive [36].

A theory describing demographic dynamics in dynamic

environments has been developed in [37–40] for models

with discrete time and has focused on random fluctuations

of the environment. The arising method for the population

growth rate is also applicable to continuous-time models [41].

As shown in experimental evolution studies [15,17,18],

under favourable conditions, the evolution of novel life

cycles in microbial populations might occur within a matter

of months. Therefore, the ecological and evolutionary pro-

cesses in fast-reproducing populations are intertwined with

each other. Especially, environmental fluctuations strongly

affect smaller groups because they are more likely to be sen-

sitive to these perturbations in the external environment

[42,43]; small changes in the environment might lead to sig-

nificant changes in group behaviour. Yet, the evolution of

life cycles of simple multicellularity under dynamic con-

ditions still remains largely unexplored. To what extent can

environmental fluctuations affect the patterns of cell colony

reproduction? What reproduction modes thrive in dynamic

environments? Do dynamic environments enrich the space

of life cycles that can evolve, or do they impose additional

restrictions? We combine methods from demographic
dynamics in dynamic environments with the general frame-

work of fragmentation mode evolution to answer these

questions.
2. Methods
2.1. Life cycle of a group-structured population in a

static environment
We consider a population model, where cells are nested into

groups. Reproduction of cells leads to the growth of groups,

but external cells are never integrated into groups (no ‘coming

together’ in the sense of [20]). The dynamics of the population

is driven by a number of biological reactions representing cell

growth and group fragmentation. After each cell division, cells

either stay together as a group or fragment [20,21]. If they stay

together, the group size increases, while the number of groups

in the population is unchanged. Such events are given by the

reactions

Xi ! Xiþ1, (2:1)

where Xi denotes the group of size i. Each cell in a group of i cells

has the same birth rate bi, and thus the growth rate of the group is

ibi. In our model, birth rates bi represent the processes influencing

cell growth: they summarize the benefits and costs of a group

living within a certain environment. The birth rate of a solitary

cell can be set to one (b1 ¼ 1) without loss of generality. On the

other hand, after division, if a group of cells fragments instead

of staying together, both the total number of cells and the

number of groups in the population increase. The fragmentation

results in reactions

Xi !
Xi

k¼1

pkXk, (2:2)

where pk is the number of produced fragments of size k. Since a

fragmentation event conserves the total number of cells,Pi
k¼1 kpk ¼ iþ 1.

For example, upon reaching size two after a division from a

solitary cell, a group may split into two independent cells, i.e.

execute fragmentation pattern 1 þ 1, or cells may stay together

increasing the group size from 1 to 2. Upon reaching size three,

they may fragment into either a bi-cellular group and an inde-

pendent cell (fragmentation pattern 2 þ 1), three independent

cells (fragmentation pattern 1 þ 1 þ 1) or cells may stay together

making the group size 3. Upon reaching size four, a group may

fragment to one of four fragmentation patterns: 3 þ 1, 2 þ 2, 2 þ
1 þ 1 or 1 þ 1 þ 1 þ 1 (figure 1a), or stay as the group of size 4

and so on. For the sake of calculation efficiency and illustrative

purposes, we limit the maximal group size n to 3 in our numeri-

cal simulations. However, the approach we developed and

our analytical results are not constrained by this limit and are

applicable to populations with any group sizes.

For an arbitrary life cycle, the rates of reaction are pro-

portional to the probability of the fragmentation pattern k to

occur, denoted as qk. Thus, the set of fragmentation probabilities,

q ¼ (q1þ 1; q2þ 1, q1þ 1 þ 1; q3þ 1, q2þ 2, q2þ 1 þ 1, q1þ 1 þ 1 þ 1; . . .),

defines the fragmentation mode of a population. In the special

case where only a single fragmentation reaction occurs, i.e. all

fragmentation probabilities except one are zero, the life cycle

represents a regular schedule of group development and frag-

mentation. We refer to such cases as pure life cycles (figure 1b).

In other cases, commonly referred to as mixed life cycles, the

sum of fragmentation probabilities at each size cannot exceed

one: q1þ 1 � 1 and q2þ 1 þ q1þ1þ1 � 1; at the maximal size it has

to be one, so in our simulations we used q3þ1 þ q2þ2 þ
q2þ1þ1 þ q1þ1þ1þ1 ¼ 1 (figure 1a).



2b2(1 – q2+1 – q1+1+1) 3

(a)

(b) pure life cycle

mixed life cycle

b1(1 – q1+1)

2b2q1+1+1

q2+1+1 = 1

qother = 0

2b2 3b3

2b2q2+1

3b3q3+1

3b3q2+2

3b3q2+1+1

3b3q1+1+1+1
b1q1+1

b1

1+1

2+1

1+1+1

3+1

2+2

2+1+1

1+1+1+1

2

Figure 1. Structure of ‘staying together’ life cycles for a population with the maximal group size n ¼ 3. (a) Schematic figure for the life cycles of a population with
n ¼ 3. Birth rates bi are identical for all cells in the same group size i. Fragmentation probability set q ¼ (q1þ1; q2þ1, q1þ1þ1; q3þ1, q2þ2, q2þ1þ1, q1þ1þ1þ1)
determines the life cycle of the group structure. (b) Pure life cycles are obtained in a special case where a single fragmentation probability is equal to one, while all
others are zero. An example of a pure life cycle using the fragmentation mode q ¼ (0; 0, 0; 0, 0, 1, 0) is presented. In a pure life cycle, all groups follow a regular
schedule of development and fragmentation. (Online version in colour.)
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The rates of reactions are density independent and therefore,

lead to a set of linear differential equations describing the popu-

lation dynamics, see electronic supplementary material,

appendix A and [21] for details

dx

d~t
¼ Ax, (2:3)

where x is the vector for abundances xi of group size i, ~t is time

and A is the projection matrix. In a static environment, the pro-

jection matrix A does not change over time. Therefore, the

population dynamics converges to a stationary regime, where

lim
~t!1

x(~t) ¼ el~tw: (2:4)

Here, l is the leading eigenvalue of the projection matrix A, and

w is the right eigenvector associated with l. The growth rate of

the population is determined by l expressed in terms of birth

rates bi and the fragmentation mode q. Hence, evolution favours

the life cycle that produces the largest l. For a static environment,

it has been shown that an evolutionarily optimal life cycle must

be a pure binary life cycle, where a parental group fragments into

exactly two offspring groups [21].
2.2. Growth of the group-structured population in a
dynamic environment

Next, we investigate the evolution of life cycles under dynamic

environmental conditions, where growth rates bi do not remain

the same through time. Here, we consider a dynamic environ-

ment in the form of a regular switch between two seasons S1

and S2. Each season is characterized by its own set of birth

rates: S1 ¼ (1, b1
2, b1

3, . . . ) and S2 ¼ (1, b2
2, b2

3, . . . ), respectively.

Consequently, S1 and S2 may favour different life cycles. In

this setting, S1 lasts for time duration t1 and then switches to

S2, which lasts for t2. Hence, the dynamic environment is deter-

mined by the two sets of birth rates and two season lengths

D ¼ {S1, t1; S2, t2}.

In the dynamic environment, the growth rate of the popu-

lation cannot be characterized by a single projection matrix.
However, the demographical dynamics within a single season is

still described by a single projection matrix. Therefore, we numeri-

cally simulated the population growth in a dynamic environment

using the corresponding projection matrix during each season. We

follow the method used in [41] to compute the average population

growth rate (L) in a dynamic environment (D) over a whole

sequence of seasons, as a slope in the logarithm of the populations

size against time (see figure 2 and electronic supplementary

material, appendix B). The average growth rate L in a dynamic

environment plays the same role as the leading eigenvalue l of

the projection matrix in a static environment: the life cycle with

higher L will eventually outgrow others with lower L.

For each studied dynamic environment D, we numerically

find evolutionarily optimal life cycles by maximizing L(q, D)

with respect to the vector of fragmentation probabilities q (see

electronic supplementary material, appendix C). Note that we

perform optimization on a multi-dimensional lattice of q, so an

accuracy of the optimal life cycle q is limited by the lattice spa-

cing, which we set to 0.05. We repeat the optimization for

different initial conditions to take into account the possibility of

multiple local optima.
3. Results
3.1. Limit regimes of dynamic environments
For a given pair of seasons {S1, S2}, we screened a wide range

of season length combinations ft1, t2g and found a set of

locally optimal life cycles for each dynamic environment

D ¼ {S1, t1; S2, t2}. We present the results of this screening

in the form of optimality maps, which indicate optimal life

cycles at a given set of season lengths. Each pixel on a map

represents a set of season lengths ft1, t2g, and the colour of

a pixel is given by the all optimal life cycles found in many

optimizations from different initial conditions (see electronic

supplementary material, appendix D). For convenience, we

convert parameters t1 and t2 into the season turnover

period T ; t1 þ t2 and the ratio of season lengths t ; t1/t2
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Figure 2. Unconstrained population growth in a dynamic environment can be approximated by exponential growth. (a) The map of evolutionarily optimal life cycles
in static environments. Only four pure binary life cycles are evolutionarily optimal: 1 þ 1, 2 þ 1, 3 þ 1 or 2 þ 2. The dynamic environment with seasons S1 and
S2 is represented by a pair of interconnected circles. (b) The growth of population executing a pure life cycle 3 þ 1 (q 3þ 1 ¼ (0; 0, 0; 1, 0, 0, 0)) in dynamic and
static environments. Each line shows the temporal growth of the population size. Coloured lines correspond to the population growth in static environments
S1 ¼ (1, 3, 0:5) and S2 ¼ (1, 0:5, 3), respectively. The two-coloured line indicates the population growth in the dynamic environment, alternating between
two seasons S1 and S2 with t1 ¼ t2 ¼ 2.5. While the growth in the dynamic environment is complicated in general, it can be approximated very well by
exponential growth (thin black line). (Online version in colour.)
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and present the obtained map using T and t. Examples of

optimality maps are presented in figure 3.

We focus our analysis on extreme regimes: prevalence of

the single season (t� 1 or t� 1), short seasons (T� 1) and

long seasons (T� 1). The numerical simulations show that at

intermediate lengths of seasons (t � 1 and T � 1), the behav-

iour of the system is intermediate between these extremes

(figure 3).

The simplest behaviour occurs in the prevalence regime

(t� 1 or t� 1). In this case, the influence of the shorter

season on the population growth is negligible. The growth

rate in such a dynamic environment is close to the growth

rate in the static environment given by the long season, i.e.

L(q, D) � l(q, S1) when the first season is much longer (t�
1). As a consequence, a pure binary life cycle, which is optimal

in the static environment provided by the first season S1, is

evolutionarily optimal in the dynamic environment D, where

the first season prevails (t� 1). Similarly, the life cycle optimal

in the static environment provided by the second season S2 is

evolutionarily optimal in dynamic environments, where t� 1.

All numerically obtained optimality maps confirm this.

For short seasons (T� 1), the population composition

changes little within a single period of season change.

Thus, demographical changes in the population occur at a

much slower timescale than changes in the environment.

As such, the system effectively experiences the average

environment with season lengths being the weights of each

component [44]. Thus, in the short seasons approximation—

the population growth rate is given by the growth rate in

the averaged static environment �S

LSSA(q, D) � l(q, �S), (3:1)

where

�S ¼ t1

t1 þ t2
S1 þ

t2

t1 þ t2
S2

¼ t
1þ t

S1 þ
1

1þ t
S2: (3:2)

This approximation also allows us to use the results of the

optimal life cycles in a static environment [21]. These imply
that for any dynamic environment with short seasons, there

is only a single evolutionarily optimal life cycle, which is a

pure binary life cycle. In addition, the short seasons approxi-

mation allows us to explicitly find the border value of t
separating the area of optimality of favoured life cycles in

the static environment given by S1 and S2, respectively.

The border is determined by the ratios of season lengths t
at which the average environment lies at the border between

areas of optimality in static environments. Numerical simu-

lations reproduce this border well, see the predicted border

marked at the left sides of the optimality maps in figure 3.

For the long season length (T� 1), the population reaches

the stationary regime within each season, and the transient

growth regime between two adjacent seasons can be negli-

gible. This suggests the long seasons approximation—the

population growth rate is given by the weighted average of

growth rates in static environments

LLSA(q, D) � t1

t1 þ t2
l(q, S1)þ t2

t1 þ t2
l(q, S2)

¼ t
1þ t

l(q, S1)þ 1

1þ t
l(q, S2): (3:3)

Under the long seasons approximation at intermediate values

of t, the optimal life cycle is not necessarily pure, and there

might be more than one locally optimal life cycle, see

examples in figure 3c. The transition in t from the prevalence

of one season to another is non-trivial in this case. These

changes in optimal life cycles along t in the long seasons

regime (T� 1) are our focus in the remaining part of this

study.
3.2. Borders of the prevalence regimes
In the limits t!1 and t! 0, the optimal life cycles are

determined by the prevalent season. However, as we increase

the other season length, the optimal life cycle may change. In

this section, we examine the border between these prevalence

regimes. We begin by considering extremely small t and

measure how long the optimal life cycle persists against the

increase of t.
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We sampled 40 000 pairs of seasons and investigated at

which t the prevalence regime is violated, see electronic sup-

plementary material, appendix E for details of sampling. We

found that the border of the prevalence regime significantly

varies between season combinations. For some pairs of sea-

sons, the prevalence regime is extremely robust while some

others show that the prevalence regime is extremely fragile;

even at t ¼ 1024 the prevalence was violated.

We found that the main factor determining the robustness

of the prevalence regime is the environment in the prevalent

season. The most fragile prevalence regimes were observed

for environments at the border between two different types

of life cycles and environments promoting unicellular life

cycle (figure 4a). At the same time, the most robust preva-

lence regimes were observed for environments far from

optimality borders (figure 4b).
3.3. Stability of life cycles in the long seasons regime
In this section, we investigate what kind of life cycles

emerge to be evolutionarily optimal at intermediate t in
the long seasons regime (T� 1). In the long seasons

regime, the population growth in a dynamic environment

can be inferred from the growth rates in two stationary

environments, see equation (3.3). Therefore, the analysis of

evolutionary optimality of life cycles can be performed

with relatively simple expressions.

An arbitrary fragmentation mode (q) is a local optimum

of the growth rate L, when any small change in the probabil-

ities set q leads to a decrease in the population growth rate.

For this to happen, all fragmentation patterns k must fulfil

the conditions

@L
@qk

���
q
, 0 if k is not executed (qk¼ 0),

@L
@qk

���
q
¼ 0 and @2L

@q2
k

���
q
, 0 if k is mixed with other patterns

of the same size (0 , qk , 1),

@L
@qk

���
q
. 0 if k is the only executed pattern of

its group size (qk¼ 1):

8>>>>>>>>><
>>>>>>>>>:

(3:4)
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First, we consider the evolutionary optimality of pure life

cycles, where only one fragmentation pattern occurs (figure

1b). These life cycles establish a regular schedule of group

growth and reproduction, which is commonly observed in

nature. From the perspective of our model, in pure life

cycles qk ¼ 0 or qk ¼ 1, the investigation of evolutionary

optimality invokes only the first-order derivatives (equation

(3.4)). A pure life cycle q becomes evolutionarily unstable

when an admixture of at least one of absent fragmentation

patterns (with qk ¼ 0) no longer decreases the growth rate:

(@L/@qk) ¼ 0. For a given pair of the pure life cycle q1 and

admixture life cycle q2, this is achieved at the ratio of the

season length

ts(k1, k2)¼�l
0
x(q(x),S2)

l0x(q(x),S1)

����
x¼1

, (3:5)

where q(x) is the mixed life cycle in which fragmenta-

tion occurs by k1 with probability x and occurs by k2 with

probability 1 2 x, see electronic supplementary material,

appendix F for details. Knowing the values of ts for all

pairs (k1, k2) makes it possible to outline the ranges of t
where each pure life cycle is optimal. We denote this optim-

ality areas as coloured bars to the right of each optimality

map (figure 3).

Next, we consider mixed life cycles, which can emerge as

evolutionarily optimal in the long seasons regime. Above, we

have shown that only pure life cycles are evolutionarily opti-

mal if there is effectively a single season (t� 1 or t� 1).

Therefore, as t approaching these extreme values, evolutiona-

rily optimal mixed life cycles cease to exist. This happens by

one of two scenarios: either a mixed life cycle transforms into

a pure one, or it merges with the local minimum of L and dis-

appears in a saddle-node bifurcation. The majority of mixed

life cycles observed in our simulations feature only two frag-

mentation patterns. For these life cycles, the transition from a

mixed optimal life cycle into a pure one occurs at values t
given by equation (3.5). The saddle-node bifurcation (if

exists) occurs at x ¼ x* and t ¼ t* satisfying

l00xx(q(x), S1)

l0x(q(x), S1)

����
x¼x�
¼ l00xx(q(x), S2)

l0x(q(x), S2)

����
x¼x�

(3:6)
and

t�(k1, k2) ¼ �l
0
x(q(x), S2)

l0x(q(x), S1)

����
x¼x�

, (3:7)

see electronic supplementary material, appendix G for

detailed analysis of mixed life cycles optimality. We highlight

the positions of saddle-node bifurcations t* with red marks

on the right-hand side of our optimality maps (figure 3c).

Finally, we found a distinct solution, when the maximal size

of groups produced in one fragmentation pattern is smaller

than the minimal size of offspring produced by another pattern.

With the maximal group size 3, there is a single such pair: k1¼

1þ 1 and k2 ¼ 2þ 2. When the two seasons in the dynamic

environment favour the pure fragmentation modes 1þ 1 and

2þ 2, the optimal life cycle in a dynamic environment in a

long seasons regime is always qC¼ q1þ 1 þ q2þ 2 ¼ (1; 0, 0;

0, 1, 0, 0), see electronic supplementary material, appendix I

for details. In the long seasons regime, a population employing

qC is capable of executing pure life cycle 1þ 1 during seasons

favouring 1 þ 1 over 2þ 2; and pure life cycle 2þ 2 during sea-

sons favouring 2þ 2 over 1 þ 1. We call such scenario a

coexisting fragmentation mode qC and the optimality map in

figure 3d presents this. Except in this special case, numerical

simulations confirm our analytical results.
3.4. The spectrum of evolutionarily optimal life cycles
in dynamic environments is diverse

In this section, we consider, which fragmentation patterns

can contribute to evolutionarily optimal life cycles. We

begin our analysis from a specific scenario, where all birth

rates are similar to each other. From a technical point of

view, the situation where all birth rates are equal, constitutes

a neutral environment at which all growth rates of any mixed

or pure life cycles are equal. We consider near neutral

environments, where cell birth rates in both seasons slightly

deviate from one bi ¼ 1 þ 1bi, 1� 1, where bi and thus bi is

different in the two seasons. As a consequence, in the vicinity

of this neutrality point (1� 1), the growth rate of any life

cycle is close to one and can be represented in a form

L(q, D) ¼ 1þ 1L1 þO(12), where L1 is associated with the

first derivatives, see electronic supplementary material,
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Figure 5. Only three kinds of life cycles can be evolutionarily optimal in near neutral environments if the maximal group size is n ¼ 2. Populations, in which group
size do not exceed two, have access to three fragmentation patterns: 1 þ 1, 2 þ 1 and 1 þ 1 þ 1. In near neutral environments constructed by
S1 ¼ {1, 1þ 1b} and S2 ¼ {1, 1þ 1g}, only three fragmentation modes can be evolutionarily optimal: pure 1 þ 1, pure 2 þ 1 and a mixed life cycle
simultaneously using fragmentation modes 1 þ 1 and 2 þ 1. The fragmentation mode 1 þ 1 þ 1 does not contribute to an evolutionary optimum under
any near neutral dynamic environment. Since the same signs for both b and g give the same optimal life cycle in both seasons, we focus on different
signs: b . 0 and g , 0. (a) For jbj , jgj, there is the range of t where the population exhibits a bi-stability between two pure life cycles. (b) For
jbj . jgj, there is the range of t where only a mixed life cycle is evolutionarily optimal. On both panels, we use rescaled variable for x-axis, t0 ; (t þ g/
b)/(jg/bj(b 2 g)). (Online version in colour.)
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appendix J. Biologically, this corresponds to a scenario, where

living in a group has only minimal impact on the cell growth.

This scenario seems to be relevant in the early stages of the

evolution of multicellularity, where benefits of the group for-

mation are minimal due to the absence of adaptations to

collective life.

There, the case where the maximal group size is limited

to two is analytically trackable, see electronic supplementary

material, appendix J. For groups not exceeding size two, only

three fragmentation patterns are available: 1 þ 1 (unicellular-

ity), 2 þ 1 (binary fragmentation) and 1 þ 1 þ 1 (multiple

fragmentation). We proved that only three types of life

cycles can emerge in near neutral environments: pure unicel-

lularity and binary fragmentation, as well as the mixed life

cycle using both of them (figure 5). The multiple fragmenta-

tion pattern is unable to contribute to evolutionarily optimal

life cycles here.

Releasing the size constraints, we found that in near neu-

tral environments, the evolutionary optimality of life cycles is
independent on the seasons turnover period T. Life cycles

evolve similarly in both the short and the long season

regime (see figure 6a and electronic supplementary material,

appendix K for a proof). As a consequence, in near neutral

environments, the optimal pure life cycles can be inferred

from the short seasons approximation. Since the areas of

optimality map are separated by narrow borders in the

order of 1 in the short seasons regime, the pure binary frag-

mentation modes are evolutionarily optimal for the

majority of dynamic environments with any season turnover

period.

If the birth rates are not in the vicinity of the neutral point

bi ¼ 1, the set of optimal life cycles violates this scheme.

Beyond the near neutral environment, we find more complex

life cycles. We find that the fragmentation pattern presented

in the short seasons regime may be absent in the long seasons

regime (figure 6b). The opposite is also possible, a fragmenta-

tion pattern absent in the short seasons may appear in the

long seasons (as a component of a mixed life cycle, though;
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figure 6c). Moreover, the multiple fragmentation, which

cannot be evolutionarily optimal in any static environment,

can evolve in a dynamic environment (again, as a component

of the mixed life cycle; figure 6d ).
3.5. Robustness of pure binary fragmentation
While the potential diversity of the life cycles in a dynamic

environment is huge, an exotic behaviour is rare, and requi-

res a fine balance of cell birth rates profiles {S1, S2} and

season lengths ft1, t2g. In the dataset used in §3.2, for each

of 40 000 pairs of seasons, we screened 41 different season

length ratios (in total 1 640 000 dynamic environments), see

electronic supplementary material, appendix E for details.

For each environment, we found and characterized the set

of evolutionarily optimal life cycles (figure 7). The majority

of dynamic environments (87%) promoted a unique pure

life cycle. A smaller fraction (13%) featured coexistence of

multiple local optima. A much smaller fraction of dynamic

environments (1.9%) exhibited mixed life cycles, the majority

of which was composed of two fragmentation patterns.

Finally, multiple fragmentation was observed in a tiny set
of environments (0.04%). Therefore, we conclude that pure

life cycles should be a widespread evolutionary strategy in

the changing environment.

To support our result, we investigate the evolution of life

cycles of larger colonial organisms. We consider groups

growing up to size n ¼ 15, so fragmentation must happen

upon the birth of the 16th cell in a group. This size limit is

comparable to the size of some volvocales algae, such as

Gonium pectorale—one of the model organisms used to

study the evolution of multicellularity.

We use the cell birth rate profiles

bi ¼ 1þM((i� 1)=(n� 1))a. Investigation of these profiles in

static environments [21] revealed that a� 1 promotes an

equal split (8 þ 8), and a� 1 promotes the production of

unicellular propagules (15 þ 1). Note that the value of M
has a relatively small influence. With these profiles, any

increase in size is always beneficial to the group. Therefore,

we restricted the optimization of life cycles to only fragmen-

tation patterns of 16-cell groups. We obtain the optimality

map, and the result supports our conclusion (figure 8). Out

of 1681 dynamic environments investigated, 1673 (99:5%)

promoted a single unique optimal life cycle in a form of



total number of dynamic environments sampled 16 40 000

unique pure optima (1 422 195) multiple local optima (214 524) mixed life cycles (31 794)
with at least three patterns (958)

non-binary fragmentation (701)

Figure 7. The majority of dynamic environments promotes a unique evolutionarily optimal pure life cycle in a form of binary fragmentation. We sampled 1.64 � 106

different long seasons dynamic environments, see electronic supplementary material, appendix E. More than one locally optimal fragmentation mode was found
only in 13% of them (second circle). In 1:9% of dynamic environments, a set of locally optimal life cycles contained a mixed life cycle (third circle). The majority
(97%) of mixed life cycles found executed just two fragmentation patterns. Only 3% of evolutionarily optimal mixed life cycles had three patterns or more. Finally, the
number of dynamic environments that promoted the evolution of non-binary fragmentation (1 þ 1 þ 1, 2 þ 1 þ 1 or 1 þ 1 þ 1 þ 1) was extremely
tiny—0:04% (last circle). So, the most common result of life cycle optimization was a single local optimum, which happened to be a pure life cycle with
binary fragmentation (first circle).
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binary fragmentation. Only eight environments (0:5%) had a

mixed optimal life cycle, and no environment exhibited a

coexistence of several local optima, or fragmentation into

multiple pieces.
4. Discussion
Environmental fluctuations are commonly observed in

nature. Under changing conditions, a trait beneficial in one

season may become detrimental in another. Thus, adaptation

to a dynamic environment may lead to totally different

phenotypes than those that evolve in a static environment.

In this manuscript, we investigated the influence of a chan-

ging environment on the evolution of life cycles in the

context of primitive multicellularity. In our model,
unstructured groups grow and eventually reproduce by frag-

mentation. The growth competition between different

reproduction modes determines which life cycle will spread

in the population.

Our present model uses the minimal set of processes

necessary for the multicellular life cycle: birth, growth and

reproduction of cell colonies. A number of other factors

might influence the evolution of life cycles as well: aggrega-

tion of cells [45,46], group death [21], cell death [45,47],

interactions between different cell types [48–50], the geome-

try of groups [51] and so forth. However, given the current

state of the field, the understanding of evolutionary dynamics

of life cycles even in the minimal set-ups is missing. Our

study has shown that even with basic processes, the spectrum

of evolutionary outcomes is rich and deserves a dedicated

investigation.
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Previous findings reveal that a static environment puts

strong constraints on evolutionarily optimal life cycles [21].

There, only pure life cycles can evolve. Moreover, among

these, only binary fragmentation life cycles, featuring frag-

mentation into two groups, can become evolutionarily

optimal. Interestingly, we found that evolution in dynamic

environments can release both constraints.

Not only pure, but also mixed life cycles are able to evolve

in our model. Being unable to perform well during both sea-

sons, groups may employ a stochastic life cycle, where

different groups randomly execute different fragmentation

patterns. Thus, mixed life cycles are a manifestation of

between-clutch bet-hedging within the scope of our model.

We found that in some dynamic environments, a mixed life

cycle is the only evolutionarily optimal strategy (figure 5b).

Our model also predicts that mixed life cycles may employ

fragmentation patterns that would not contribute to the opti-

mal life cycles under any of static seasonal components alone

(figure 6c,d ). Yet, the most abundant scenario was the existence

of only one locally optimal life cycle, which use a pure binary

fragmentation mode (figure 7). In other words, our model

predicts that for simple multicellularity, between-clutch bet-

hedging is possible to evolve, but is rarely an evolutionarily

optimal strategy—even in changing environments.

Another form of bet-hedging observed among complex

multicellular organisms is within-clutch bet-hedging, where

offspring with diverse properties are produced in a single

act of reproduction [35]. From the perspective of simple

multicellular life cycles, an act of reproduction is the distri-

bution of the parental biomass among offspring. Hence, it

is impossible to distinguish between an organism releasing

a propagule and an organism producing two offspring of

different sizes. In both cases, the result of reproduction is a

collection of organisms of different sizes. The traditional

point of view on these events is to consider them as

asymmetric division, or propagule formation, and not as a

bet-hedging scenario. In other words, while we can dis-

tinguish, who is the parent and who is the offspring in

the case of a chicken laying eggs, it is hardly possible to do

so for a broken cyanobacteria filament. Thus, the very idea

of within-clutch bet-hedging implies more developed

multicellularity than that considered in our study.

In the light of the evolution of simple multicellularity,

pure life cycles deserve special attention. One of the concep-

tual barriers for the species transitioning from unicellular to

multicellular existence is the necessity to develop a predict-

able life cycle. While, the formal grouping of cells into

clusters can give some advantages to the population [28,52],
the real strength of multicellularity eventually comes from

beneficial interactions within the groups, such as cooperation

or division of labour [18,53–55]. The ability of cells to partici-

pate in such interactions is not guaranteed beforehand and

therefore, must evolve. For this, a regular schedule of group

growth and reproduction provides a proper basis. In our

model, this regularity is obtained by pure life cycles. Thus,

to what extent the changing environment can violate the evol-

utionary stability of pure life cycles is an interesting question.

Despite the mixed life cycles observed in simulations,

pure life cycles remain prevalent: less than 2% of our

dynamic environments promoted mixed cycles (figure 7).

Among the four analysed limiting regimes, three favour

pure life cycles. If one season occupies a large enough pro-

portion of the seasonal cycle, the evolutionarily optimal life

cycle is the same as if the second season does not happen

at all. In other words, short disruptions of environmental

conditions are unable to affect the evolutionary optimality

of life cycles. The actual threshold below which the short

season is unable to influence the life cycle evolution is a com-

plex function of the environments and the turnover rate.

Nevertheless, this value can be either inferred from numerical

simulations of our model, or estimated from approximations.

The short seasons regime only promotes pure life cycles. In

near neutral environments, the behaviour at any season’s

turnover time becomes similar to the one expressed at short

seasons—the transitional area between pure life cycles

becomes narrow. Only the long season regime can explicitly

promote mixed life cycles. However, these emerge only at

intermediary values of season length.

These findings are surprising because in dynamic

environments, intuitively, mixed life cycles, which combine

the best of both worlds, are expected to be optimal. Counter-

ing that intuition, we found that pure life cycles emerge for a

wide range of dynamic environments.
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