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Abstract Natural populations can contain multiple types of coexisting individuals. How does

natural selection maintain such diversity within and across populations? A popular theoretical basis

for the maintenance of diversity is cyclic dominance, illustrated by the rock-paper-scissor game.

However, it appears difficult to find cyclic dominance in nature. Why is this the case? Focusing on

continuously produced novel mutations, we theoretically addressed the rareness of cyclic

dominance. We developed a model of an evolving population and studied the formation of cyclic

dominance. Our results showed that the chance for cyclic dominance to emerge is lower when the

newly introduced type is similar to existing types compared to the introduction of an unrelated

type. This suggests that cyclic dominance is more likely to evolve through the assembly of

unrelated types whereas it rarely evolves within a community of similar types.

Introduction
Natural populations ranging from microbial communities to animal societies consist of many differ-

ent individuals. Some individuals compete with each other to exploit a shared resource (Har-

din, 1960; Connell, 1983), whereas others coexist (Morris et al., 2013). Interactions affect the

death or reproduction of individuals and thus shape the composition of populations (Friedman and

Gore, 2017). Different types of individuals are distinguishable at the interaction level and they have

a complex interaction structure (Farahpour et al., 2018). Because interaction structures themselves

can support the coexistence of multiple types, they have been extensively studied in ecology and

evolution (Gross et al., 2009; Allesina and Levine, 2011). A particularly exciting type of interaction

is cyclic dominance, in which each type dominates another one but is in turn dominated by a sepa-

rate type, leading to a Rock-Paper-Scissors cycle (Maynard Smith, 1982; Hofbauer et al., 1998;

Szab and Fth, 2007) as sketched in Figure 1A. None of the types fixates in the population, because

each type is dominated by one type while it simultaneously dominates a third type. Thus, it has been

argued that this type of interaction can support biodiversity (Reichenbach et al., 2007). Cyclic domi-

nance has therefore attracted substantial attention and it has been extensively studied theoretically

(Maynard Smith, 1982; Hofbauer et al., 1998; Frean and Abraham, 2001; Hauert et al., 2002;

Reichenbach et al., 2007; Szab and Fth, 2007; Mathiesen et al., 2011; Jiang et al., 2011;

Allesina and Levine, 2011; Szolnoki et al., 2014).

A famous example of this type of cyclic dominance in biology is toxin production in Escherichia

coli (Kerr et al., 2002; Kirkup and Riley, 2004; Cascales et al., 2007). Toxin-producing (or colicino-

genic) E. coli cells can purge cells that are sensitive to the toxin. However such toxin producers are

dominated by resistant cells that do not produce the toxin. Once common, resistant cells are again

dominated by sensitive cells, which avoid the costs of resistance. This leads to cyclic dominance in a

Rock-Paper-Scissors manner, as shown in Figure 1B. Another example is the mating strategies of

North American side-blotched lizards Uta stansburiana (Sinervo and Lively, 1996). The strategy of

males guarding several females dominates the strategy of males guarding only a single female. How-

ever, sneaky strategies under which males secretly mate with guarded females can become domi-

nant over the strategy of males guarding several females. Once such a sneaky strategy is common,
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the strategy of guarding only a single female can be successful again leading to cyclic dominance

among the mating types as illustrated in Figure 1C. In addition to E. coli and side-blotched lizards,

other examples of cyclic dominance have been described in ecology: Stylopoma spongites

(Jackson and Buss, 1975), Drosophila melanogaster (Clark et al., 2000), European lizards Lacerta

vivipara (Sinervo et al., 2007), and plant systems (Taylor, 1990; Lankau and Strauss, 2007;

Cameron et al., 2009). These types of cyclic dominance arise because of competition, which can

happen within and between species at the same trophical level. Mating or sperm competitions are

the basis of cyclic dominance within species observed in U. stansburiana and D. melanogaster,

whereas common resource competition can happen both between and within species.

However, traditional theoretical work assumes a set of predefined cyclic dominance types without

asking how they developed or came together. In ecosystems, the introduction of a new species

through migration can lead to such cyclic dominance. In this context, it is often termed intransitive

competition (Allesina and Levine, 2011; Soliveres et al., 2015; Gallien et al., 2017). However,

immigrating species can also disturb and destroy cyclic dominance. In evolving populations, new

types can arise through mutation and recombination. In the same manner, mutation and recombina-

tion can lead to the formation of cyclic dominance but can also lead to types that do not fit into

such types of dominance and break the cycle. A recent experimental study (Higgins et al., 2017)

indicated that in the assembly of microbial ecosystems based on 20 bacterial strains found in a single

grain of soil, only 3 of almost 1000 triplets exhibited cyclic dominance. Other soil bacterial species

(Wright and Vetsigian, 2016; Friedman et al., 2017) also displayed a lack of cyclic dominance. This

rareness is found in both soil bacteria and plant systems (Taylor, 1990). Why is it so difficult for

cyclic dominance to emerge by assembly or evolution? In this study, we ask the following question

theoretically: How frequent is cyclic dominance in situations in which new types constantly arise, pro-

viding an opportunity for new cycles but also breaking old cycles at the same time?

Forming a cyclic dominance from a single type is challenging because as soon as the second type

arises, the dominance type will take over the whole population, driving extinction of the other type.

Therefore, a third type must arise before the population loses either of the two previous types. Such

a precise timing of the arrival of a new type is critical for developing cyclic dominance and it can

occur when new types arise at a high frequency, either through high mutation rates, recombination,

or immigration (Kotil and Vetsigian, 2018; Tarnita, 2018). This rapid evolution can be achieved

through both high mutation rates per capita and large population sizes (Lanfear et al., 2014;

Hague and Routman, 2016; Vahdati et al., 2017; Kotil and Vetsigian, 2018; Tarnita, 2018). Thus,

we considered a model in which the population naturally evolves to a large population size

(Park et al., 2019), which allows the development of cyclic dominances via an evolutionary process.

Figure 1. Cyclic dominance triplets across the scale of organisms. In cyclic dominance, each type dominates one type and it is in turn dominated by

another type. An arrow points from the dominated toward the dominant type. (A) The three actions in the game, Rock-Paper-Scissors cyclically

dominate each other. (B) This game can also describe bacterial interactions (Kerr et al., 2002; Kirkup and Riley, 2004; Cascales et al., 2007): Some

E. coli cells (orange) can produce a toxin that suppresses the survival of sensitive cells (blue). Hence toxin-producing cells (orange) dominate sensitive

cells, whereas they are dominated by resistant cells (yellow). However in the absence of toxin-producing cells, the sensitive cells dominate resistant

cells, exhibiting cyclic dominance. (C) Such dynamics can also occur in higher animals, as typified by the mating strategies of male side-blotched lizards

(Sinervo and Lively, 1996; Sinervo et al., 2007): Strategies under which individual lizards guard many females (orange) can be invaded by a sneaker

strategy that steals matings (yellow). If such a sneaker strategy is frequent, guarding a single mating partner (blue) can lead to higher mating success.

However, once sneakers become rare again, guarding many females is beneficial, leading to cyclic dominance.
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Once we introduced our model in more detail, we will show that the interaction of ecology and

evolution leads to increasing population size. This increases the chances that cyclic dominance arises,

but it remains rare. Next, we rationalize this finding: While the lifespans of cyclic and non-cyclic dom-

inance triplets are similar, it is more difficult to form cyclic dominance compared to non-cyclic domi-

nance. The underlying reason is that similarity between parental and offspring payoffs suppresses

the formation of cyclic dominance. Finally, we discuss which genealogical structure can promote or

suppress cyclic dominance.

Materials and methods
Interactions between individuals affect their death or birth. A traditional model for describing an

interacting population is the generalized Lotka-Volterra equation (Ginzburg et al., 1988;

Bomze, 1995; Yoshida, 2003). In particular, some studies (Biancalani et al., 2015; Huang et al.,

2015; Shtilerman et al., 2015; Barbier et al., 2018; Farahpour et al., 2018) assumed that the inter-

action determines the likelihood of death from a pairwise competition. These interaction parameters

can be written as a form of a matrix, including self-interaction. However, only a few studies consid-

ered novel mutations (Huang et al., 2012; Shtilerman et al., 2015; Farahpour et al., 2018). Draw-

ing new interaction parameters for a new type and extending the interaction matrix, we considered

such a novel mutation process. In addition, the size of the interaction matrix can be reduced when

types go extinct. We traced an evolving population by dealing with this dynamically changing

matrix.

We built the model based on individual reaction rules

I ! Iþ I birth without mutation at rate lbð1��Þ;

I ! Iþ I 0 birth with mutation at rate lb�;

I !; background death at rate ld;

Iþ J ! J death due to competition at rate dij;

(1)

where I and J are individuals of types i and j, respectively. We assumed that all types are in the same

trophic level, and thus there is only competition and no predation. All types have the same back-

ground birth and death rates. Only competition makes a difference (Huang et al., 2015;

Farahpour et al., 2018; Park et al., 2019). Because the population always collapses when lb � ld,

we only focused on lb>ld. For the sake of simplicity, we only considered well-mixed populations

without any other high-order interactions.

Formulating the competition death rate dij as a function of the payoff Aij, we connected evolution-

ary game theory to the competitive Lotka-Volterra type dynamics (Huang et al., 2012; Huang et al.,

2015; Park and Traulsen, 2017; Park et al., 2019; Sidhom and Galla, 2020). Note that Aij is the

payoff of an individual of type i from the interaction with an individual of type j. Because lower pay-

offs should increase the probability of death, we used an exponentially decaying function for the

competition death rate as follows:

dij ¼ aþ e�Aij ; (2)

where a>0 is the baseline death rate from competition, which ensures that the population remains

bounded regardless of the value of the evolving payoffs Aij. A larger payoff implies a lower death

rate from competition. The overall competition death rate is always positive, such that we remain in

the regime of the competitive Lotka-Volterra equations.

For a large population size, the abundance xi of type i can be described using the competitive

Lotka-Volterra equation

d

dT
xi ¼ ðlb�ldÞxi�

X

n

j¼1

dijxixj; (3)

where n is the number of types in the population, used as a diversity index, and T is the time. The

stability of the population is determined by Equation (3). In parallel, the stability between only two

types can be determined by the two associated equations in Equation (3), which are described by

four payoff values of the two types.
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Once a new mutant type arises during reproduction, new interactions occur. To describe these

new interactions, we draw new payoff values from the parental payoff with Gaussian noise

Ai0 j ¼ Aijþ �;

Aji0 ¼ Ajiþ �;

Ai0i0 ¼ Aiiþ �;

(4)

where � is a random variable sampled from a Gaussian distribution with zero mean and variance s
2.

This inheritance of payoffs with noise implies that the mutant type i0 slightly deviates from the paren-

tal type i. Here, we treat self-interaction Aii and interaction with other types Aijð6¼iÞ in the same way.

Because of new interactions, the population composition changes over time, as shown in Figure 2A.

We let the population evolve from a single type with a randomly drawn initial payoff from the normal

distribution with mean lnð1000Þ and standard deviation 1. As a natural consequence of evolving pay-

offs, the average population size also evolves. Because different types are fully described by the pay-

off matrix, we can trace the evolving population by tracking the payoff matrix, as shown in

Figure 2B. We do not consider any tradeoff: having higher payoffs does not cost anything. Hence,

the evolution tends to increase the payoffs constantly and thus drives the system into a regime

where payoff differences become smaller.

To construct a pairwise interaction network, we used the stability between two types. Hence the

term interaction refers to the pairwise relationship, considering the stability between two types.

There are four possible scenarios for stability (see Appendix 1):

. Dominance of type i:
represented byi  j for Aii>Aji and Aij>Ajj.

. Dominance of type j:
represented byi!!j for Aii<Aji and Aij<Ajj.

. Bistability:
represented byi !j for Aii>Aji and Aij<Ajj.

. Coexistence:
represented byi! j for Aii<Aji and Aij>Ajj.

Constructing the interaction network, we can examine the formation and the collapse of cyclic domi-

nance, as shown in Figure 2C. If the links are drawn from a random matrix, each stability scenario

described above occurs with the same probability. Thus, we find a proportion of 0.50 dominance

links and a proportion of 0.25 proportions for bistability and coexistence links, respectively. Because

the networks can contain three different link types (dominance, bistability, and coexistence), both

cyclic dominance and other types of triplets can be found. However, in the main text, we only

focused on cyclic and non-cyclic dominance triplets which are composed of only dominance because

the proportions of each triplet strongly depend on the proportions of link types. Hence at a given

link composition (three dominance links), we investigate how often we can observe cyclic dominance

compared to non-cyclic one.

Results

Evolution leads to increasing population size
The population dynamics described in Equation (1) appears simple, but its tracing is complicated

because of the novel mutations. Due to the emergence of a new mutant and its consequences, the

payoff matrix dynamically changes. As large payoffs lower competition death rates, types with higher

payoffs are more likely to survive. Therefore, payoffs evolve to larger values, which increases the

population size (Park et al., 2019). Since there is no tradeoff on the payoffs, the average payoff

increases monotonically. This makes types become more similar, enhancing diversity (Scheffer and

van Nes, 2006). However, the population size saturates at a certain level because of the baseline

death rate a corresponding to resource limitation and enters a steady state (see Appendix 2).

For small a values (rich environments) in particular, the population size N at the steady state

becomes large, containing many different types (see Figure 3A). This evolution toward a large popu-

lation induces rapid mutation. Once the populations size becomes large, new mutant types are gen-

erated faster than in smaller populations given a fixed mutation rate per individual. In this rapid
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mutation regime, a new mutant can arise before the population equilibrates, thereby establishing a

cyclic dominance from a timely emerged mutant (Kotil and Vetsigian, 2018). Thus, cyclic dominance

can be established when the populations enters the rapid mutation regime, as shown in Figure 3B.

The proportions of triplets were averaged over all surviving realizations. In principle, we can observe

a triplet from t ¼ 2 even though there were fewer than three types on average. Because of the

smaller average diversity hni, there were large fluctuations in measuring the proportions of triplets in

the early regime (t <~ 100). However, the measurement became more accurate as diversity increased.

Figure 2. Evolving population dynamics and tracing its interactions and constructing a network. (A) Sample simulation of population dynamics over

time. Different colors correspond to different types. The colored area represents the abundance of each type. Time t is measured as the number of

mutation events that occurred. (B) Interaction matrices between types at four different time points are marked by vertical dashed lines in panel A.

Whenever a mutant emerges in the population, the diversity n increases and the payoff matrix becomes larger. Extinction of resident types can also

happen because of the new mutant, reducing the size of the matrix. For example, one of the first mutant types (green) dominates the resident type

(brown) and takes over the entire population. (C) Interaction structures inferred from the interaction matrices. There are three possible relationships:

dominance (with two different directions indicated by an arrow from the dominated type to the dominant type), coexistence (arrows from each type to

the middle), and bistability (arrows towards both types, not present here). We focused on triplets as basic substructures of the network. There are two

triplets composed of three dominance links, but they have different topologies. One of them is cyclic dominance (highlighted in green), and the other

is non-cyclic dominance (highlighted in yellow).
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Figure 3. Formation of cyclic and non-cyclic dominance in the rapid mutation regime. (A) For a low baseline death rate a, the population size N tends

to increases with new mutations. The average population size hNi and diversity hni increase. When the population size N becomes large, cyclic and

non-cyclic dominance can emerge. (B) Cyclic dominance triplets were less abundant than non-cyclic ones. In the long run, the proportions saturated at

around 0.0036 and 0.105 for cyclic and non-cyclic dominance, respectively. (C) To quantify the rarity of cyclic dominance compared with non-cyclic

dominance, we calculate the fraction � of cyclic dominance. In the early dynamics, it fluctuates because only a few realizations can form triplets because

of the low average diversity. However, when large diversity is reached, the fraction became more stable, fluctuating around 0.033. This value is much

smaller than the expected value when link types are randomly drawn (� ¼ 0:25). indicating the rareness of cyclic dominance produced by novel

mutations. (Simulation details: lb ¼ 0:9, ld ¼ 0:4, a ¼ 5 � 10�6, s ¼ 1, and � ¼ 10
�5. Unless we mentioned the parameter values, the same parameters

were used for the following figures as well. The average is based on 4889 samples that did not go extinct among 5000 realizations. In each time point,

the ensemble average in B and C is performed only for n � 3 at a given time.).
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Cyclic dominance triplets are rare
The proportions of cyclic and non-cyclic dominance triplets increase in the early dynamics and

quickly saturate. Whereas population dynamics illustrates the formation of both cyclic and non-cyclic

dominance, cyclic dominance is much rarer than non-cyclic dominance. To quantify this rareness of

cyclic dominance, we measured the fraction �, which is defined by the fraction of cyclic dominance

triplets among all dominance triplets (cyclic and non-cyclic) (see Figure 3C). In steady state, the frac-

tion yielded �» 0:033, indicating that one cyclic dominance triplet can be found among 30 domi-

nance-composed triplets. If the pairwise relationships are random (all four possible links appear in

the same probability 1/4, called a random network), then the fraction � of cyclic dominance should

be 0.25 because there are only two configurations of cyclic dominance triplets, whereas six configu-

rations produce non-cyclic dominance triplets. Hence cyclic dominance that developed from our

population dynamics is much rarer than expected from a random choice of interactions. To elucidate

why it is the case, we checked how long each triplet can be sustained in the population and how

often they emerge. First, we focused on the lifetime of cyclic and non-cyclic dominance and then

moved on the formation of each triplet. When it comes to the chance to emerge cyclic and non-

cyclic dominance, we argued that the genealogy structure shaped by eco-evolutionary dynamics will

enhance or suppress the formation of cyclic dominance.

The lifespans of cyclic and non-cyclic dominance triplets are similar
The rareness of cyclic dominance triplets may be caused by their shorter lifespan compared with

that of non-cyclic dominance triplets. Thus, we investigated the lifespan of triplets first to understand

the rareness of cyclic dominance. Once triplets arise in populations, we can identify them, and trace

how long they persist. Lifespan distributions in the steady state of both cyclic and non-cyclic domi-

nance triplets decayed algebraically. We plotted the complementary cumulative distribution func-

tions (CCDFs), clearly revealing a power law decay, as shown in Figure 4A. Surprisingly, there was

no difference in the lifespan of both triplets. Both cyclic and non-cyclic dominance triplets were

destroyed in five mutation events on average. The non-cyclic dominance triplet has a higher chance

of persisting longer, although the difference is small. In addition, the median is the same for both

distributions because almost all probabilities are concentrated on short lifespans. In conclusion, life-

span does not explain why cyclic dominance is rarer than non-cyclic dominance. Hence, the lower

chance for cyclic dominance to emerge is the reason.

The condition to form cyclic dominance is more strict than that for non-
cyclic dominance
Why is it more difficult for cyclic dominance to emerge than for non-cyclic dominance? One factor is

that the conditions needed for an interaction matrix to provide cyclic dominance are more restrictive

than those for non-cyclic dominance. For a matrix to reveal cyclic dominance, it is necessary that in

each of the three columns, the three payoffs Aij, Ajj, and Akj are ordered (Aij<Ajj<Akj or Aij>Ajj>Akj).

Conversely, the formation of non-cyclic dominance requires this condition to be satisfied only in a

single column, whereas the other two columns should satisfy a less restrictive condition (Aij<Ajj and

Akj<Ajj or vice versa). For example, in random payoff matrices where all payoffs are randomly drawn

from the standard normal distribution, the fraction of cyclic dominance is 1=13» 0:077 (as shown in

Appendix 4), which is smaller than the value of 2=8 ¼ 0:25 expected in a random network of directed

links. This is because in the matrix approach, unlike a random network, links in a triplet are interde-

pendent; self-interaction payoffs contribute to the character of several links at once.

Similarity between parental and offspring payoffs suppresses the
formation of cyclic dominance
The fraction � » 0:077 in the random matrix is still larger than that obtained from our population

dynamics �» 0:033, implying there are other factors suppressing the development of cyclic domi-

nance. A key reason is the correlation between payoffs. In our model, the elements of the payoff

matrix are not fully independent because of heredity. Offsprings payoffs are derived from their

parents payoffs. We found that this correlation between payoffs plays an important role in suppress-

ing the formation of cyclic dominance. For example, let us imagine two different uncorrelated pre-

existing types represented by a 2 � 2 random matrix. All elements are drawn from the standard
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normal distribution. If a third type emerges from a pre-existing one by a mutation, the average frac-

tion of cyclic dominance becomes �» 0:02 (the standard normal distribution is used for new payoffs

and we average across 5 105 samples), which is lower than that of the assembly of thee uncorrelated

types. This is because the payoffs of a new offspring are similar to its parental payoffs: the offspring

is likely to have the same relationships with other types in a population as the parental type and any

type dominated by the parent will also be dominated by the offspring. The triplets including these

offspring and parental types are more likely to form non-cyclic dominance than a cyclic one. Hence

the correlation between payoffs affects the fractions by which cyclic dominance emerges compared

with non-cyclic dominance.

To check the effect of the correlation on emerging triplets, we measured the similarity between

types as a proxy of the correlation between payoffs. We defined the trait vector ~Tl of the type l using

the row capturing with its own payoff and the column of the others payoff against it in the payoff

matrix, ~Tl ¼ ðAl;i;Al;j;Al;k;Ai;l;Aj;l;Ak;lÞ, similarly to Farahpour et al., 2018. Because the average payoff

increases over time, we shifted all elements in those vectors by a constant to ensure that the average

of all values is zero. Then, using normalized vectors after shifting we calculated the scalar product

for all pairs of trait vectors as a similarity measure. Larger values indicate that the two types have

more similar payoff values. Each triplet has three trait vectors and thus has three similarity measures.

Taking the mean and standard deviation of these three similarities, we found that in cyclic domi-

nance the three types tend to be less similar compared to non-cyclic dominance, as shown in

Figure 4B. The inheritance plays a key role in the emergence of cyclic and non-cyclic triplets, giving

rise to a correlation between payoffs. Because the payoff correlation is determined by a genealogy

structure, in the following we investigated which of these structures have higher or lower chances to

promote the emergence of cyclic dominance.

Genealogical structure can promote or suppress cyclic dominance
Between the last common ancestor and the present types, there are intermediary types accumulat-

ing mutations between them. Genealogies tell us who is whose parent, tracing back to the common

ancestor of the observed types. From the genealogy, we can infer how many mutations were accu-

mulated by each type and the time at which they diverged. If two types have only accumulated a
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few mutations from the most recent common ancestor, their payoffs are likely to be similar. Hence,

the genealogy structure shapes the correlation between payoffs and affects the value of fraction �.

To study the role of genealogies, we first characterized genealogies for three types based on accu-

mulated mutational distances, see Figure 5AB. We found that for a triplet of types, the distribution

of payoff elements could be characterized by five parameters of the genealogy, which all measure

the number of mutations between types w1, w2, x, y, and z (see Appendix 5).

We analyzed those mutational distances for cyclic and non-cyclic triplets found in the simulation

at the steady-state. From the analysis, we inferred that the crucial parameter influencing the fraction

� of cyclic dominance is the fraction Fl of mutations accumulated after each type evolves indepen-

dently from others (the time td in Figure 5B).

Payoff correlations must be developed before lineages become independent at td, depending on

the mutational history (w1 and x). With more mutations being accumulated after the types diver-

gence, the correlation between types becomes weaker, increasing the chance of the cyclic domi-

nance to emerge, see Figure 5C. On the other hand, with only few mutations after td the strong

correlation between parental and offsprings payoffs remains, which mostly induces the emergence

of non-cyclic dominance. This means that the mutations accumulated after all three types diverge

are important for decoupling their payoff correlations, increasing the chance to form the cyclic domi-

nance. This finding agrees well with numerically investigated genealogies that gave the minimal and

maximal values of the fraction �, called minimizer and maximizer genealogies, respectively. For mini-

mizer genealogies, the majority of mutations were accumulated before td (see Appendix 6). Con-

versely, for maximizer genealogies, the majority of mutations were accumulated after all three

lineages diverged from each other.

In addition, numerically calculated minimizer genealogies almost completely suppressed the

emergence of cyclic dominance �min<0:001. For the maximizer, the fraction could be as high as

�max ¼ 1=6 » 0:167. Both the fraction of cyclic dominance arising from the random matrix �» 0:077

and that found in our simulations �» 0:033 fell between the minimal and the maximal values possible

with the genealogy structure. The fractions � from population dynamics are closer to the minimal

value, as shown in Figure 6. Therefore, we can infer that in the genealogies occurred in population

Figure 5. Genealogies and their effect on the fraction � of cyclic dominance. (A). The scheme of genealogy. Vertical axis represents time, and

horizontal axis represents mutational distance. Each solid vertical line corresponds to a single type. Horizontal lines indicate when mutation happens.

Intermediary mutants can die out and a sequence of intermediary mutations is represented by a diagonal line. (B). An example of a genealogy for three

types. Types i, j, and k are the types under consideration, and type o is their last common ancestor. Type n is the last common ancestor of j and k, and

type m is the ancestor of the type i which existed at the moment when type j diverges from type k. Each of the three types has its own independent

lineage from time td on, and the fraction of accumulated mutations before and after this time determined the chance for cyclic dominance to emerge.

For a list of all other possible genealogies, see Appendix 5. (C) For the sake of simplicity, we defined Fl as the fraction of accumulated mutations after

time td compared to all mutations since the last common ancestor, Fl ¼
w2þyþz

w2þyþzþw1þx
. At the steady-state, when more mutations are accumulated after td

(large Fl values), cyclic dominance can emerge more often by reducing the payoff correlations.
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dynamics, the similarity of the new types to their parental type prevents the emergence of cyclic

dominance.

Discussion
Cyclic dominance is extremely interesting from a conceptual and theoretical perspective and it has

thus been analyzed in great detail in mathematical biology (Hofbauer et al., 1998; Hofbauer and

Sigmund, 2003; Szab and Fth, 2007). However, the theoretical literature typically refers to only a

handful of examples in nature. Moreover, recent experiments have revealed that it is difficult for

cyclic dominance to emerge in microbial populations (Wright and Vetsigian, 2016; Friedman et al.,

2017; Higgins et al., 2017). Why is the establishment of cyclic dominance so difficult? To address

this question, we used an evolutionary process with evolving interactions for the formation of such

cyclic dominance instead of following the more conventional approach of using a predefined set of

interactions. For example, Kotil and Vetsigian, 2018 observed the formation of cyclic dominance in

the fast evolution regime with adaptation, but the involved traits were predefined. However, we

argue that it is difficult for cyclic dominance to emerge even in the presence of rapid evolution. In

addition, our investigation shows no correlation between diversity and the probability to find cyclic

Figure 6. We compared the fractions � of cyclic dominance in the steady state for various baseline death rates a from our simulations. We also

denoted three reference fractions: the maximizer genealogy (�» 0:167), random matrix (�» 0:077), and minimizer genealogy (� <0.001). For various a,

the fractions of cyclic dominance were similar, although the average diversities in steady state were different. The majority of fractions � are between

the one found for the minimizer geneaology and the fraction from the random payoff matrix. This implies that in the genealogies shaped by our

population dynamics, the surviving offspring type is typically similar to the parental type. Each point is averaged over the surviving samples among 5000

realizations (4897, 4908, 4903, 4886, 4901, and 4889 samples for a ¼ 10
�5; 9 � 10�6; 8 � 10�6; 7 � 10�6; 6 � 10�6; 5 � 10�6, respectively).
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dominance. The diversity observed in our model does not originate from the cyclic dominance struc-

ture, but from the generation on a time scale that is fast compared to equilibration of the system.

Our results indicate cyclic dominance in general could be a mechanism to support diversity, but it is

most probably not essential in a situation where it can emerge, as such situations are characterized

by a high diversity in the first place. Even if we rescale the payoffs to prevent going towards neutral-

ity which increases diversity, cyclic dominance remains rare as long as the cyclic dominance is not a

main driver for the diversity. This result is robust even when we consider the population frequency

weights, see Appendix 7. In our model, the non-cyclic dominance can reach a majority of the popula-

tion, while the cyclic dominance typically remains bounded to a much lower frequency.

We also examined the circumstances under which cyclic dominance can appear more frequently.

While the probability of assembling such an interaction structure by chance in a payoff matrix with

uncorrelated random entries is small, the probability to evolve such an interaction structure is even

smaller. The inheritance of interactions from parent to offspring is a key mechanism shaping the cor-

relations between payoffs and determines the formation of cyclic dominance. From our approach,

we found that the introduction of an uncorrelated type is crucial for the formation of cyclic domi-

nance triplets. Because the migration of new species can be interpreted as such an introduction, our

results suggest that cyclic dominance might be more frequent on an inter-species basis than on an

intra-species basis. As widespread intransitive competition is found in ecological systems

(Soliveres et al., 2015; Gallien et al., 2017), our manuscript nicely supports the basic idea that

assembly of unrelated types is more likely to lead to cyclic triplets than evolution, in which emerging

types are closely related.

Our approach, which reduces the complexity from continuous values to a categorical classifica-

tion, may help to bridge the model dynamics and experimental data more easily. Experimental work

has provided data regarding both the constituents of a microbial community but also the interac-

tions between them. However for large communities, parameterizing all interactions in the model

numerically makes it difficult to identify the fundamental factors shaping the dynamics. Reducing the

complexity may permit study of the large scales of experimental data connecting the underlying

model dynamics and large datasets.

An important limitation of our work is the assumption of global interactions. In our model, all indi-

viduals can interact with each other, ignoring the spatial population structure. A spatial model could

localize the interactions and lead to the more frequent formation of cyclic dominance. Such a locali-

zation can foster cyclic dominance for a predefined cyclic set (Durrett and Levin, 1997; Durrett and

Levin, 1998; Frean and Abraham, 2001; Reichenbach et al., 2007; Szab and Fth, 2007;

Mathiesen et al., 2011; Jiang et al., 2011; Mitarai et al., 2012; Szolnoki et al., 2014; Kelsic et al.,

2015; Sneppen, 2017). However, before moving into spatial models it appears essential to investi-

gate this issue in the absence of all potentially confounding factors. Such models appear necessary

for explaining why cyclic dominance within one species is not found often in nature, and they may

open a new direction for the extensive theoretical work on this topic.
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Appendix 1

Pairwise relationship based on stability
For large population sizes, the change of abundances of types can be described by deterministic

equations. Linear stability analysis reveals which types will persist in equilibrium (Strogatz, 2000).

Using this stability, we determine the relationship between two types i and j. In this section, we per-

form linear stability analysis first and then determine the pairwise relationships based on that

stability.

To determine the stability between two types, type 1 and type 2, we focus on the two equations

_x1 ¼ lx1� d11x
2

1
� d12x1x2;

_x2 ¼ lx2� d21x1x2� d22x
2

2
;

(A1.1)

where l¼ lb�ld. Since the death rates dij are all positive, the population would always go extinct

for l<0. Thus, we only consider a positive l. There are four fixed points ðx�
1
;x�

2
Þ: One is the extinction

of both types ð0;0Þ, two are indicating each single-type population ðl=d11;0Þ and ð0;l=d22Þ, and the

fourth one is the coexistence point ðd22�d12Þl
d11d22�d12d21

; ðd11�d21Þl
d11d22�d12d21

� �

. To check the stability of each fixed point,

we calculate the Jacobian matrix J,

J¼
l� 2d11x1� d12x2 �d12x1

�d21x2 l� d21x1� 2d22x2

� �

; (A1.2)

and then calculate the eigenvalues for the fixed point.

The extinction point (0,0) is always unstable, because both eigenvalues are identical to l>0. On

the other hand, the three other fixed points have one negative eigenvalue �l, indicating that they

are saddle or stable fixed points; If the second eigenvalue is positive, the fixed point becomes a sad-

dle and is unstable. If the second eigenvalue is negative, the fixed point is stable. Hence the fixed

point ðl=d11; 0Þ becomes stable when d21>d11, because the eigenvalue is ðd11 � d21Þl=d11. In the same

manner, the condition d12>d22 can be obtained for a stable fixed point ðl=d11; 0Þ. Lastly, the coexis-

tence point has an eigenvalue � ðd11�d21Þðd22�d12Þ
d11d22�d12d21

l. For meanginful values of abundances, stable coexis-

tence points have to satisfy the conditions x�
1
>0 and x�

2
>0. Together with these restrictions, we can

find the coexistence fixed point is stable only if both d11>d21 and d22>d12 are satisfied.

We classify the pairwise relationship based on these stabilities. Dominance relationships are given

if only a single-type fixed point is stable while all other fixed points are unstable. When both single-

type fixed points are stable, a bistability relationship is drawn. A coexistence relationship is achieved

when only the coexistence 1xed point is stable. We summarized the stabilities of 1xed points at a

given condition and named the pairwise relationship in Appendix 1—table 1.

Appendix 1—table 1. Given conditions, the stabilities of four fixed points are shown with its

corresponding relationship between two types.

Stable fixed points are marked by S, while unstable fixed points are marke by U. Extinction is always

unstable, while the stabilities of other fixed points depend on conditions. For the condition in the first

row, d11<d21 and d12<d22, type 1 can survive in the equilibrium, indicating the dominance of type 1.

The second condition indicates the dominance of type 2. When both single-type fixed points are sta-

ble, the population can end up either type 1 or 2 population showing bistability. For the last condi-

tion, only the coexistence fixed point is stable.

Conditions

Fixed points

Relationshipð0; 0Þ ðx�
1
; 0Þ ð0; x�

2
Þ ðx�

1
; x�

2
Þ

d11<d21 and d12<d22 U S U U Dominance of type 1

d11>d21 and d12>d22 U U S U Dominance of type 2

d11<d21 and d12>d22 U S S U Bistability

d11>d21 and d12<d22 U U U S Coexistence
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Appendix 2

Population size and diversity at steady-state for various baseline death
rates
In this section, we show how the population size N and diversity n evolve in time t with various base-

line death rates a. Since larger payoffs imply lower death rates, individuals with larger payoffs tend

to survive. As a result of evolution, the overall death rates decrease, which enlarges the population

size. This can be interpreted that species improve their efficiency to consume a resource. However,

if resources are limited, the population size is confined. We implement this resource limit by intro-

ducing the baseline death rate a. The death rates from the competition cannot be lower than the

baseline death rate, and thus the population size saturates at a certain level at the end, l=a. For vari-

ous a, we run 5000 independent stochastic simulations and measure the average population size

and diversity in time t, see Appendix 2—figure 1A and B. The average runs over the surviving sam-

ples at a given time t ¼ 10000, and we denote the averaged quantity O as hOi. As we expected, the

population sizes evolve to l=a, and thus larger a leads to smaller population sizes.

Large population size reduces the time until new types occur in the population, and at the same

time it takes longer to equilibrate. Thus, a large population size increases the number of different

types in the population via two processes: (i) Even when the most competitive type is expected to

fixate in the population, new types which are less fit can constantly emerge due to mutation. (ii) A

second mechanism is ecological tunneling (Kotil and Vetsigian, 2018): Even though the population

dynamics yields the extinction of certain types, it can be rescued by the emergence of a new type

which supports the coexistence of types predicted to be extinct. From those effects, larger popula-

tions have higher diversity Appendix 2—figure 1B. We compare the average population size and

diversity in the stationary regime as well, see Appendix 2—figure 1C.

We also take a closer look at the average payoff values. Because of selection, the average payoff

increases in time, but the increment becomes smaller as the average increases, see Appendix 2—

figure 1D. After a transient time, the average payoffs increases logarithmically. It means that the

natural selection induced by the payoff difference becomes weaker and is almost neural at the end.

Hence, in the long run, the diversity mainly originates from the mutation-selection balance.

Appendix 2—figure 1. Population size and diversity for various baseline death rates a. The average

population size hNi and diversity hni in mutation event time t are shown in (A) and (B), respectively.

We run 5000 independent simulations and use surviving samples at t ¼ 10000 to obtain average

quantities. The average population sizes and diversities at the stationary regime are determined by
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the baseline death rates: the larger the death rate, the smaller the population size and diversity.

Also, both quantities have a positive correlation, see (C, D). As the populations evolve, the average

payoffs hAiji increase, but the increment decreases, indicating a weak selection regime. The initial

payoff is denoted by A0. Particularly, the average increases logarithmically in the stationary regime.

The left inset is the same data as the main panel on a linear-log scale and shows the logarithmic

increase of the average payoffs. The right inset is the probability distribution function of all payoffs

in the steady state for a ¼ 5 � 10�6. The distribution is smooth but slightly skewed to the left.

(lb ¼ 0:9, ld ¼ 0:4, s2 ¼ 1, and � ¼ 10
�5).
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Appendix 3

Link proportions
From the payoff matrix, we can determine the pairwise relationship between types, constructing a

network. We represent the relationship between two types i and j with three different link types,

dominance, bistability, and coexistence:

i  j or i!! j : Dominance of i or j;

i ! j : Bistability;

i! j : Coexistence:

(A3.1)

As a basic element of a network, we investigate the frequencies of link types first.

As a reference, we consider a random payoff matrix model wherein all payoffs are randomly

drawn from the standard normal distribution. In this case, the probability that one payoff is larger

than another is 0.5 because all payoffs are independently sampled from the same distribution. Thus

each condition in Appendix 1—table 1 happens with the same probability, 0.25. Thus, the probabil-

ity to observe a dominance link is 0.5 (since there are two directions), and the others are 0.25. We

use these values as a reference to compare the link proportions obtained from population dynamics.

With population dynamics, the behavior of link frequencies differs for different a. For small a, the

ensemble-averaged proportions are stable in time, while with large a values the average proportions

fluctuate a lot, see Appendix 3——figure 1A and B. For large a, the number of types rarely exceeds

one. Hence, the link proportions fluctuate a lot, but the average values are well predicted from a

random payoff matrix because the links appear by chance. On the other hand, for small a, many links

can be formed due to the presence of multiple types. In this case, the average link proportions are

stable in the stationary regime, and coexistence links are favored compared to the random matrix

case. We also plot the mean of ensemble-averaged link proportions in the stationary regimes 9500 �

t � 10000 for various a in Appendix 3——figure 1A. As we can see, the link proportions get closer

to that of the random matrix as increasing the baseline death rates a.

Appendix 3—figure 1. Average link proportions in the steady-state. Time series of the average link

proportions in the stationary regime for small baseline death rates (A, a ¼ 5 � 10�6) and large

baseline death rates (B, a ¼ 5 � 10�4). The average runs over all surviving samples. C The average link

proportions in the steady-state indicate different values for different a. We averaged those values in

time to get the representative link proportions in the stationary regime, 9500 � t � 10000. We find
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that large a agrees with the values predicted by the random payoff matrix, because almost all links

are formed by chance due to the low diversity. For small a where the population size and the

diversity are larger, we find more coexistence links, which tend to be stable for a long time.
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Appendix 4

Triplet proportions

Appendix 4—figure 1. Triplet structures and their proportions. (A) With three different link types,

dominance with directionality, bistability, and coexistence, we can find 16 different triplet structures.

We draw possible triplets and label them with an integer index we will refer to as Triad ID. (B) The

average proportions of triplets in the steady-state are shown in the population dynamics with a ¼

5 � 10�6 and a ¼ 5 � 10�4 and the random matrix. Since the link proportions strongly affect the triplet

proportions, the direct comparison of triplets that have different link composition is meaningless.

Thus, we focus on a set of triplets, which have the same link composition but a different structure.

There are four such sets (6-7; 9-11; 12-14; 15-16), and we marked using dashed boxes for those sets

in the panel. The last box indicates the cyclic and non-cyclic dominance triplets. For comparison, the

colored stacked bar shows the proportions of the different link types for the corresponding value of

a.

Appendix 4—table 1. Degeneracy of each triplet structure and their proportions in the random

matrix.

Dashed boxes marks sets of triplets, which have the same link composition, but a different structure.

Triad ID Degeneracy Proportions

1 1 4/108

2 3 3/108

3 3 3/108

4 1 4/108

5 6 12/108

6 6 3/108

7 6 12/108

8 6 12/108

9 3 12/108

10 6 6/108

11 3 3/108

12 3 3/108

13 6 6/108

14 3 12/108

15 2 1/108

16 6 12/108
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Let us now consider triplets that are constructed by three links. With four kinds of link relation-

ships, in total we can find 64 possible triplets. However, if we take into account symmetries, this

reduces to 16 different triplet structure, see Appendix 4—figure 1. We call the number of triplets,

which have the same triplet structure degeneracy. For example, with type indices i, j, and k, the

cyclic dominance triplet structure can be found in two different triplets: i!! j!! k !! i and

i  j  k   i. In contrast, there is no degeneracy for the triplet types marked by 1 and 4 in

Appendix 4—figure 1A because changing the indices of types does not give any difference. Differ-

ent triplet structures have different degeneracy because they have different mirror and rotation sym-

metries, summarized in Appendix 4—figure 1. Since our interest is the triplet structure, we

investigate proportions of 16 triplet structures considering those degeneracies.

Again we use a random payoff matrix to attain the reference triplet proportions first. For three

types i, j, and k, we can construct a 3 3 random matrix,

A¼

Aii Aij Aik

Aji Ajj Aji

Aki Akj Akk

0

B

@

1

C

A
: (A4.1)

All elements are independently drawn from the standard normal distribution Nðxj0;1Þ. Here,

Nðxjm;s2Þ indicates a Gaussian distribution with mean m and variance s
2. Any triplet is fully defined

by three relationships, and each pairwise game determines one relationship. Mathematically, this

corresponds to three 2� 2 submatrices of A. However, these matrices are not independent, as it

would require 3� 2� 2¼ 12 independent parameters while the payoff matrix has only 3� 3¼ 9

entries.

To determine the type of triplet structure, we focus on one type of individual j. For this type j, we

can characterize invasion possibilities against the two other types, giving four possible situations,

. i ! j! k, when Aij<Ajj<Akj

. i  j k, when Aij>Ajj>Akj

. i ! j k, when Ajj>Aij and Ajj>Akj

. i  j! k, when Ajj<Aij and Ajj<Akj

where i ! j means that j is stable with respect to invasion of i from rare (either j dominates i, i!

! j or they are bi-stable i ! j, hence the notation). Mathematically, this corresponds to three 3�

1 columns of A. Since all columns are independent, the probability of finding a certain triplet is the

product of three probabilities to find a certain set of stubs for each type.

Thus we calculate the probability to find a certain set of subs for a type. The probability 2� 2 that

three random variables a, b, and c satisfy the condition a<b<c is given by convolution,

PðaÞ ¼

Z

¥

�¥

Z c

�¥

Z b

�¥
Nðaj0;1ÞN ðbj0;1ÞN ðcj0;1Þdadbdc

¼

Z

¥

�¥

Z c

�¥
FðbÞN ðbj0;1ÞN ðcj0;1Þdbdc

¼
1

2

Z

¥

�¥
FðcÞ½ �2Nðcj0;1Þdc

¼
1

6

(A4.2)

where FðxÞ is the probit function, FðxÞ ¼
R x

�¥Nð�j0;1Þd�. Hence, the probability that a type has in-

and out-stubs is 1/6. On the other hand, the probability Pðc<aandc<bÞ is

Pðc<aandc<bÞ ¼

Z

¥

�¥

Z

¥

c

Z

¥

c

Nðaj0;1ÞN ðbj0;1ÞN ðcj0;1Þdadbdc

¼

Z

¥

�¥
1�FðcÞ½ �2Nðcj0;1Þdc

¼
1

3
(A4.3)

In the same way, Pðc>aand c>bÞ is 1/3. Hence, the probabilities to observe each set of stubs are
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. i ! j! k appears with probability 1/6

. i  j k appears with probability 1/6

. i ! j k appears with probability 1/3

. i  j! k appears with probability 1/3

With those probabilities and the degeneracies, we can calculate the triplet proportions expected in

a random payoff matrix. The results are summarized in Appendix 4—table 1, where we find the

cyclic dominance (Triad ID 15) is the rarest one. At the same time, the non-cyclic dominance (Triad

ID 16) is one of the most abundant triplets. From the proportions we can also obtain the fraction of

cyclic dominance among cyclic and non-cyclic dominance triplets as � ¼ 1=13, indicating 12 non-

cyclic dominances can occur while only a single cyclic dominance appears.

Now we move to triplet proportions in population dynamics, see Appendix 4—figure 1B. Since

the triplet proportions strongly depend on link proportions, the results for a ¼ 5 � 10�6 and a ¼

5 � 10�4 are very different. For example, coexistence links are norm for a ¼ 5 � 10�6 and thus the trip-

let with Triad ID 4 is more abundant than in other cases. Thus, it is hard to directly compare propor-

tions of triplets, which have different link composition. Instead of that, we compare the triplets,

which have the same link composition. This comparison allows us to find which structure is more

abundant, eliminating the effect of link proportions. There are four such sets of triplets, see Appen-

dix 4—figure 1B. One of the sets consists of cyclic and non-cyclic dominance triplets, which are

composed of three dominance links. If we look at the fraction � of cyclic dominance, we can find

that non-cyclic dominance is more suppressed in population dynamics than in the random matrix.

For the other three sets of triplets, we can also find that the types which have bistability usually dom-

inate another type while the types with coexistence are dominated by others. However, this ten-

dency becomes weaker in population dynamics compared to the random payoff matrix analysis.
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Appendix 5

Properties of payoff matrices for three types and a given genealogy
The emergence of a new mutant type l induces a new row and a new column in the payoff matrix. If

we denote the parental type of type l as rðlÞ, the new payoffs are written by

Ali ¼ ArðlÞiþ �ð1Þ;

Ail ¼ AirðlÞþ �ð1Þ;

All ¼ ArðlÞrðlÞþ �ð1Þ;

(A5.1)

where �ðs2Þ are random values sampled from the Gaussian distribution with zero mean and variation

s
2, Nðxj0;s2Þ. Due to this inheritance, the genealogical structure which tells us who is whose parent

type shapes the payoffs. In this section, we show how payoff elements are determined by a given

genealogy.

Appendix 5—figure 1. Possible genealogies for three types. (A) The scheme of genealogy. Vertical

axis represents time, and horizontal axis represents mutational distance. Each solid vertical line

corresponds to a surviving type. Horizontal lines indicate when mutation happens. Intermediary

mutants can be omitted and a sequence of intermediary mutations is represented by a diagonal line.

(B-E) Four possible genealogies of three types. Types i, j, and k are focal types, and type o is their

last common ancestor. Type n is the last common ancestor of j and k, and type m is the progenitor

of type i existed at the moment when type j diverges from type k. The numbers of mutations

between types are represented as w1;w2; x; y, and z: o! m is w1; m! i is w2; o! n is x; n! j is y;

n! k is z.

Genealogies can be schematically depicted with time and mutational distance axes, see Appen-

dix 5—figure 1A. For three focal types i, j, and k, a number of possible genealogies exists. We

begin with a scenario shown in Appendix 5—figure 1B, where the lineage leading to the type i

diverges from the last common ancestor o first and a different lineage leading to the two types j and

k diverges from o later. We index the last common ancestor of k and j in their lineage as n. Also, we

give an index m for the progenitor of type i at the moment when lineages leading to types j and k

diverged.
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We begin with a payoff matrix of types i, j, and k and trace it back to the moment of the last com-

mon ancestor type o of all three types. All nine payoffs between types i, j, and k are derived from

the single payoff value Aoo.

For a pair of types j and k, all four payoffs Ajj, Ajk, Akj, and Akk can be traced back to the payoff

Ann. Let us imagine that y and z mutations happen leading the emergence of type j and k from the

type n respectively. If y mutation events occur first before z mutation events, we can write the value

of Ajk as

Ajk ¼

¼ Aj;rðkÞþ �ð1Þ

¼ Aj;r2ðkÞþ �ð1Þþ �ð1Þ

� � �

¼ Ajnþ
X

z

s¼1

�ð1Þ

¼ ArðjÞ;nþ �ð1Þþ
X

z

s¼1

�ð1Þ

� � �

¼ Annþ
X

yþz

s¼1

�ð1Þ:

(A5.2)

Since the random variable � follows the normal distribution, we can simply write

Ajk ¼ Annþ �ðyþ zÞ: (A5.3)

Thus, multiple mutation events can be written as a single mutation event with larger variance. For

any other order of the mutation events, the final expression is the same even though all intermediate

terms will be different.

In the same way, we can proceed with the other three payoffs. Consequently, all four payoffs can

be written as

Ajj ¼ Annþ �ðyÞ;

Ajk ¼ Annþ �ðyþ zÞ;

Akj ¼ Annþ �ðyþ zÞ;

Akk ¼ Annþ �ðzÞ:

(A5.4)

Self-interactions, Ajj and Akk, do not change when the other type accumulates a mutation, so their

mutational distances from Ann are smaller.

Next, we consider type i which is diverged from the type o but is a different lineage from j and k.

Then, the payoff Aii can be traced back to Amm as

Aii ¼ Ammþ �ðw2Þ; (A5.5)

where w2 is the number of mutations accumulated in the lineage of type i from type m. The payoffs

between i and two other types can be traced back to payoffs between their progenitors Amn and Anm

Aij ¼ Amnþ �ðw2þ yÞ;

Aik ¼ Amnþ �ðw2þ zÞ;

Aji ¼ Anmþ �ðw2þ yÞ;

Aki ¼ Anmþ �ðw2þ zÞ:

(A5.6)

Hence, all nine payoffs describing interactions between types i, j, and k can be traced back to

four payoffs, Amm, Amn, Anm, and Ann, characterizing interactions between m and n. These four payoffs,

in turn can be traced back to Aoo in the same way,
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Amm ¼ Aooþ �ðw1Þ;

Amn ¼ Aooþ �ðw1þ xÞ;

Anm ¼ Aooþ �ðw1þ xÞ;

Ann ¼ Aooþ �ðxÞ;

(A5.7)

where x is the number of mutations accumulated from the common ancestor o to the type n, and w1

is the number of mutations accumulated from the type o to the type m. In summary, we show how

payoffs can be calculated from their common ancestors payoffs, see Appendix 5—figure 2.

The same calculations apply to any other genealogy, for example ones presented in Appendix 5—

figure 1C-E, if we label the types in a specific way. The labels j and k should indicate the pair of

types, which diverged the last, that is, the last common ancestor of j and k is the most recent one

among all three pairwise the last common ancestors. By exclusion, the rest one becomes type i.

Type n is the last common ancestor of j and k (for genealogy on Appendix 5—figure 1E and F, n is

the same as o). Finally, type m is the progenitor of i existed at the moment of divergence of j and k

(for genealogy on Appendix 5—figure 1D, m is the same as o).

Aii Aij Aik Aji Aki Ajj Ajk Akj Akk

Amn Anm Ann

Aoo

td

+ ξ(w1 )

+ ξ(w2 )

+ ξ(w2 + y) + ξ(w2 + z) + ξ(w2 + y) + ξ(w2 + z)

+ ξ(y + z)+ ξ(y + z)

+ ξ(y) + ξ(z)

+ ξ(w1 + x )

+ ξ(x )

+ ξ(w1 + x )

Appendix 5—figure 2. Expression of payoffs derived from its parental payoffs Each element of pay-

off matrix in a triplet can be traced back to Aoo. However, due to the genealogy structure, some

payoffs have additional common ancestors later than Aoo. Note that for a genealogy at

Appendix 5—figure 1D, m ¼ o and for Appendix 5—figure 1E, n ¼ o. Adding up the random

variable � to the payoff in the lower part gives the payoff in the upper part.
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Appendix 6

Minimizer and maximizer genealogies
In this section, we numerically identify those genealogies which produce the largest or smallest pro-

portions of certain triplets. First of all, we note that the fractions of triplets do not depend on scales

of the set of mutational distances Dm ¼ fw1;w2; x; y; zg without population dynamics; rescaling the

distances results in the same triplet proportions. Therefore, without loss of generality, we can

assume that all five mutational distances sum up to one and are thus located on the simplex

w1 þ w2 þ xþ yþ z ¼ 1.

We search for extreme genealogies by numerical optimization, implemented by a hill climbing

algorithm. The optimization starts from a random set of Dm and identifies the local optimum. Since

our method can find only local optima, we use multiple initial values to find optimal set. After we

identified the mutational distance sets which give local optima, we cluster them using principle com-

ponent analysis (PCA). We denote the X-th class of genealogies that maximize and minimize the pro-

portion of triplet tri by Dtri�X and Dtri�X, respectively. For different scenarios, we find different

numbers of distinct classes of genealogies.

Maximization of the number of cyclic dominances
First, we ask which genealogies maximize the number of cyclic dominance triplets. Performing PCA

analysis, we found five different classes of such genealogies, see Appendix 6—table 1. We denote

cyclic dominance triplets as T15 and non-cyclic dominance ones as T16. Classes D15�1 and D15�2 are

effectively the same genealogy, where all three types diverge from each other very early and then

one of these types accumulates all the mutations (the most isolated type i in D15�1 or one of the

more recently diverged types k in D15�2, see the end of Appendix 5 for the details of types label-

ling). Classes D15�3 and D15�5 also are also similar each other. All three types diverge from each

other as early as possible and then two of them equally share the subsequent mutations (j and k in

D15�3, or i and k in D15�5). In the class D15�4, all three types diverge from each other as early as

possible. In this case, each of three types have the similar number of accumulated mutations (33%).

Appendix 6—table 1. Genealogies maximizing T15.

Median values of each of five mutational distances w1;w2; x; y; z are given. We use 12600 independent

random initial values that each code one genealogy. We count how many of these genealogies

belong to each class and sort classes by the average proportion of T15.

Class Counts Proportion of T15 w1 w2 X Y Z

D15�1 5044 0.020 0.0020 0.98 0 0 0.010

D15�2 2012 0.019 0 0 0 0 0.98

D15�3 683 0.016 0 0.0021 0.0017 0.37 0.59

D15�4 2701 0.014 0.0058 0.32 0 0.23 0.41

D15�5 2160 0.016 0.0046 0.52 0 0 0.44

Minimization of the number of non-cyclic dominances
Next, we ask which genealogies instead minimize the number of non-cyclic dominance triplets, with

the expectation that they will be similar to the ones above. Performing PCA analysis, we again find

five different classes, see Appendix 6—table 2. The obtained genealogies minimizing T15 have the

same characteristics of mutational distances with the genealogies maximizing T16, see section F. The

genealogy class D16�1 is the same with D15�1. The class D16�2 is the same as D15�2, and D16�3; 4; 5

are the same as D15�4. Classes D16�3, D16�4, and D16�5 differ only in their values of w1 and x. Thus
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these can be considered as a fine structure of a single class. Classes equivalent to D15�3 and D15�5

are not found in D16.

Appendix 6—table 2. Genealogies minimizing T16.

Median values of Dm are given. We use 20000 independent simulations.

Class Counts Proportion of T16 w1 w2 X Y Z

D16�1 1576 0.11 0.0045 0.97 0 0 0.012

D16�2 697 0.11 0.0012 0.0021 0 0.011 0.96

D16�3 5883 0.11 0 0.29 0.019 0.22 0.45

D16�4 598 0.11 0.019 0.29 0.014 0.23 0.44

D16�5 11246 0.11 0.034 0.31 0 0.21 0.43

Minimization of the number of cyclic dominances
Alternatively, we can also ask for which genealogies it is hardest to obtain cyclic dominances. Per-

forming PCA analysis, we find three different classes, see Appendix 6—table 3. In the class D15�1,

most of mutations are accumulated in the lineage of the type i before types j and k are diverged.

The divergence of types j and k tends to be the last mutational event in this genealogy. In the class

D15�2, most mutations are accumulated in the lineage of the common progenitor of types j and k

before their divergence. The divergence of types j and k tends to be the last mutational event in this

genealogy. In the class D15�3, mutations are equally shared between the lineage of type i and the

common progenitors of types j and k before their divergence. Similar to above two cases, the diver-

gence of types j and k tends to be the last mutational event in this genealogy.

Appendix 6—table 3. Genealogies minimizing T15.

Median values of Dm are given. We use 20000 independent simulations.

Class Counts Fraction of T15 w1 w2 X Y Z

D15�1 4995 <10�4 0.97 0 0.018 0 0.0051

D15�2 5011 <10�4 0.014 0 0.97 0 0.0057

D15�3 9994 0.00012 0.48 0 0.49 0.0 0.014

Maximization of the number of non-cyclic dominances
Now we ask for which genealogies it is easiest to obtain non-cyclic dominances. Performing PCA

analysis, we find again three different classes of geneaolgies, see Appendix 6—table 4. Again, the

obtained three classes are the same as minimizing cyclic dominances T15: The class D16�1 is the

same as D15�1, and D16�2 is the same as D15�2, and D16�3 is the same as D15�3.

Appendix 6—table 4. Genealogies maximizing T16.

Median values of Dm are given.

Class Counts Proportion of T16 w1 w2 X Y Z

D16-1 4772 0.24 0.97 0 0.025 0 0.0019

D16-2 11017 0.24 0.019 0 0.98 0 0.0023

D16-3 4211 0.24 0.45 0 0.53 0.0 0.0037

Summary for optimization
From all optimization results we find two extreme genealogies for maximizing and minimizing the

fraction � of cyclic dominances. In the first class, most of mutations occur after all three lineages sep-

arate and these mutations are accumulated in a single lineage, see Appendix 6—table 5. We call
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them maximizer genealogies. These genealogies promote cyclic dominances and suppress non-cyclic

dominances. In the second class, the most of mutations occur before types j and k diverge. These

genealogies suppress cyclic dominances, while promoting non-cyclic dominances. We call them max-

imizer genealogies.

Appendix 6—table 5. Minimizer and Maximizer genealogies.

The fraction � of cyclic dominance is also calculated for each case.

Matrix generation T15 T16

Random matrix 0.0093 0.11 0.077

Maximizer 0.02 0.11 0.154

Minimizer < 10-4 0.24 0.000

Analytics for maximizer genealogies
We calculate the proportions of cyclic and non-cyclic dominance triplets at maximizer genealogies.

In that case, the cyclic dominance triplets occur

. i! j! k ! i with probability 1=96

. i! k ! j! i with probability 1=96

Altogether, this results in pðT15Þ ¼ 1=48 » 0:0208. The non-cyclic dominance triplet T16 has degeneracy

six, and they occur

. j! k ! i with probability 1=96

. i! k ! j with probability 1=96

. k ! j! i with probability 1=48

. k ! i! j with probability 1=48

. j! i! k with probability 1=48

. i! j! k with probability 1=48

Altogether, this results in pðT16Þ ¼ 5=48 » 0:104, yielding � ¼ 1=6 » 0:167. The results agree well with

numerical results in Appendix 6—table 5.
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Minimal model

Appendix 6—figure 1. Minimal model. (A) We can also shape the payoff correlation by controlling

the sampling distribution. We use different variances of Gaussian noise for different mutation events,

controlling the mutational distances. Mutational distances are controlled by not only how many

steps proceed but also how big the jump is related variance of noise. Here, we assume a very simple

genealogy type with different noise variances; The first mutant type M1 originates from the type o

with variance s
2

1
while the second mutant M2 mutated from M1 has variance s

2

2
for new payoffs. (B)

Since only the relative mutational distances matter, we defined Fl ¼
s2

s1þs2

. As we vary the fraction Fl,

we calculate the fraction � for three types o, M1, and M2. Small Fl values give the same payoff

structure of the minimizer while the maximizer is reproduced for large Fl. The chance to observe the

cyclic dominance triplets increases with Fl, because types M1 and M2 become uncorrelated.

Besides genealogies, there is also another way to shape the payoff correlation. Mutational distan-

ces are controlled by not only how many steps proceed but also how big the jump is related variance

of noise. In a minimal model, we can directly control the closeness of new-born type by using a dif-

ferent variance s
2 of Gaussian noise. We generate the first mutant type M1 from the original type o

with the normal distribution, and we use variance s
2

1
when we generate the type M1. Then, we

assume that M1 is the parental type of type M2, and the variance s
2

2
is used in this case. This proce-

dure is schematically drawn in Appendix 6—figure 1A. Note that only the relative mutational distan-

ces are important, and thus we introduce the fraction Fl that measures the distances before and

after the divergence of the third type. When Fl is small, the close type to the resident type arises

which is corresponding to the minimizer genealogy. On the other hand, if we use large Fl, it will

reproduce the maximizer by introducing uncorrelated types in the population. The minimum and

maximum average fractions � are obtained by changing Fl, yielding almost zero and 0.165 respec-

tively, see Appendix 6—figure 1B. These results agree well with the results of the genealogy

approach.
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Appendix 7

Correlation between diversity and triplet fraction
We investigated the correlation between diversity and the probability of having cyclic and non-cyclic

dominance triplets in the system at the steady-state. We measured the Pearson correlation coeffi-

cient rxy between two variables x and y defined as

rxy ¼

P

iðxi��xÞðyi��yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

iðx��xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

iðy��yÞ2
q ; (A7.1)

where �x and �y indicate the averages of the variables x and y. The index i runs over all samples (in our

case, 1944 surviving realizations are used). The correlation coefficient is bound from -1 to 1, repre-

senting fully anti-correlated to fully-correlated variables.

We used three different diversity indices: (1) richness n as the number of different types, (2) Shan-

non diversity index H ¼ �
Pn

i¼1 fi ln fi, and (3) Simpson diversity index S ¼
Pn

i¼1 f
2

i

� ��1
. Note that a

population frequency of type i is denoted by fi. Correlations were measured between each diversity

index and the probabilities to having cyclic or non-cyclic dominance triplets, Pcyc and Pncyc, see

Appendix 7—figure 1. All correlation coefficients are summarized in Appendix 7—table 1. The

results show weak anti-correlation between diversity and cyclic dominance and stronger anti-correla-

tion between diversity and non-cyclic dominance. This tendency does not change even when popula-

tion frequencies are considered. Finally we measured the correlation coefficient between the

fraction of cyclic dominance � and diversity, and surprisingly the coefficient showed almost zero.

This implies that there is no significant correlation between cyclic dominance and diversity.

Appendix 7—table 1. Pearson correlation between diversity and fraction of cyclic and non-cyclic

triplets.

In total 1944 realizations are used for the calculations and the average is across 500 time steps. We

find a weak anti-correlation between the fraction of cyclic dominance and diversity while the fraction

of non-cyclic dominance has stronger anti-correlation with diversity. Despite these differences, almost

no correlation between the fraction and diversity is found.

Richness index N Shannon index H Simpson index S

Pcyc -0.05 -0.12 -0.11

Pncyc -0.15 -0.35 -0.34

Pcycfcyc -0.04 -0.08 -0.07

Pncycfncyc -0.12 -0.35 -0.34

0.01 -0.01 -0.004

Anti-correlation between the fraction of non-cyclic dominance Pncyc and diversity could be under-

stood from the population frequencies of non-cyclic dominance fncyc. In the steady-state, non-cyclic

dominance usually occupies the majority of the population, taking around 0.83 of the population on

average, see Appendix 7—figure 2AB. It seems that the non-cyclic dominance emerges from the

majority, and thus their fraction could be high when the winner takes over almost the whole popula-

tion, leading to low diversity. On the other hand, cyclic dominance usually takes only a minority,

showing a peak near fcyc » 0 in Appendix 7—figure 2C.
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Appendix 7—figure 1. Scatter plots of diversity versus fractions of triplets. In the first and the

second rows, we plot Pcyc and Pncyc for various diversities (in each column) in the steady-state. The

last row shows the scatter plot for � ¼ Pcyc

PcycþPncyc
. For 1944 realizations, we measured the Pearson

correlation coefficients and noted the correlation measured in each panel.
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Appendix 7—figure 2. Average population frequencies belonging to cyclic and non-cyclic triplets

fcyc and fncyc over time. (A) On average around 83% of population belongs to non-cyclic dominance

triplets while only 33% population belongs to cyclic dominance triplets. (B-C) The probability

distribution functions of fncyc and fcyc are shown for each triplet. Non-cyclic dominance mainly

emerges from majorities while cyclic dominance usually takes small population frequencies. Only

30% of the time, cyclic dominance can take over more than half of the population.
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