bioRxiv preprint doi: https://doi.org/10.1101/2021.09.13.460035; this version posted September 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1 Evolution of reproductive strategies in incipient

. multicellularity

5 Yuanxiao Gao!, Yuriy Pichugin', Chaitanya S. Gokhale?, and Arne Traulsen!”

4 'Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology,

5 August-Thienemann-Str. 2, 24306 P16n, Germany

s “Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of
7 Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plon, Germany

8 *Corresponding author: Arne Traulsen, traulsen @evolbio.mpg.de

9 Abstract

10 Multicellular organisms can potentially show a large degree of diversity in reproductive strategies, as they

11 could reproduce offspring with varying sizes and compositions compared to their unicellular ancestors. In

12 reality, only a few of these reproductive strategies are prevalent. To understand why this could be the case,
13 we develop a stage-structured population model to probe the evolutionary growth advantages of reproductive
14 strategies in incipient multicellular organisms. The performance of reproductive strategies is evaluated by the
15 growth rates of corresponding populations. We identify the optimal reproductive strategy, which leads to the
16 largest growth rate for a population. Considering the effects of organism size and cellular interaction, we
17 found that distinct reproductive strategies could perform uniquely or equally well under different conditions.
18 Only binary-splitting reproductive strategies can be uniquely optimal. Our results show that organism size and
19 cellular interaction can play crucial roles in shaping reproductive strategies in nascent multicellularity. Our
20 model sheds light on understanding the mechanism driving the evolution of reproductive strategies in incipient
21 multicellularity. Meanwhile, beyond multicellularity, our results imply a crucial factor in the evolution of
22 reproductive strategies of unicellular species - organism size.

» 1 Introduction

22 The evolution of multicellularity is viewed as a major evolutionary transition and it has occurred repeatedly
25 across prokaryotes and eukaryotes (Bonner,|1998}; |Grosberg and Strathmann, 2007; Rokas, 2008;|Claessen et al.,
2 2014} [Sebe-Pedros et al.l 2017 Brunet and King| 2017)). With an increase in organism size, phenotypically
27 heterogeneous organisms emerged through cell differentiation (McCarthy and Enquist, 2005 |Arendt, 2008}
2s [Brunet and King| [2017). Reproductive modes of multicellular organisms may change with organism size and
20 composition. In principle, multicellular organisms could reproduce multiple offspring with distinct cell numbers
s and organism composition — in contrast to their unicellular ancestors (Michod and Roze} |1999; Ratcliff et al.,
a1 [2012; |Pichugin et al., 2017, 2019; |Gao et al.l [2019). The number of possible reproductive modes rapidly
»2 increases with organism size. For example, for an organism containing three cells, two reproductive strategies
33 are possible: split into three single-celled newborn organisms (1+ 1+ 1) or into a single-celled plus a two-celled
s« newborn organism (2 + 1). For an organism containing ten cells, there are 41 such reproductive strategies,
s and for a twenty-celled organism, there are 626 reproductive strategies. However, only a few reproductive
s strategies dominate the tree of life. Some prominent examples abound, such as binary fission producing two
a7 single-celled organisms, multiple fission producing many single-celled organisms simultaneously (Suresh et al.|
s [1994; |Angert, 2005} |[Flores and Herrero, [2010), fragmentation reproducing many-celled propagules (Ratcliff]

s et al.,|2012) and a special bottleneck reproductive strategy, a multicellular organism producing a single-celled


https://doi.org/10.1101/2021.09.13.460035
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.13.460035; this version posted September 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

s newborn organism repeatedly (Grosberg and Strathmannl,[1998;|Wolpert and Szathmary| 2002; Brunet and King|
s [2017).

a2 The origin and the evolution of reproductive strategies are not well understood. Only a few reproductive
43 strategies have been considered in previous work. The fragmentation mode of producing many-celled propag-
4 ules has been investigated, in order to understand cell death in yeast (Libby et al.l [2014) or to understand
s the advantages of multicellular life cycles experiencing a unicellular stage (Grosberg and Strathmann, [1998;
4 |Michod and Roze| |1999). Previous work has examined the mechanism of life cycle transition from the unicel-
47 lular stage to the multicellular stage. However, the underlying reproductive strategies are still unknown (Staps
4 let al.[2019). Recent work has also investigated mixed reproductive strategies (Pichugin et al.l 2017, 2019), in
49 which the fragmentation mode of an organism is not pre-determined, but selected by natural selection from all
so fragmentation modes. A subset of reproductive strategies with equal-sized offspring have been investigated in
st communities with cooperative interactions and deleterious mutations (Henriques et al.l | 2021). The majority of
s2 the literature is focused on the reproductive strategies of homogeneous organisms composed of identical cells.
ss  We have recently considered phenotypically heterogeneous organisms (Gao et al., |2019), but cellular interac-
s« tions were restricted to linear frequency-dependence and we ignored the impact of the organism size. Therefore,
ss it is still unclear how organism size and cellular interaction, together, can shape reproductive strategies.

56 Organism size confers various advantages to organisms (Kaiser, 2001} |(Carroll, 2001), such as avoiding
57 predators (Fisher et al.,2016; Kapsetaki and West, 2019), or incentivising the division of labour (Carroll, 2001}
ss  [Matt and Umen} [2016). Meanwhile, organism size can inhibit growth for different reasons, such as competition
s for space (Libby et al.,|2014) or light (Kapsetaki and West, 2019). Organism size can also affect reproductive
e strategies as early as nascent multicellularity (Michod, 2007; Solar1 et al., [2013} [Ratcliff et al.l 2012; [Libby
st fet al.,[2014). Field observations are ambiguous about the effects of organism size (Yamamoto and Shiah, |2010j
s2 |Nielsen, [2006; L1 et al., 2014; Wilson et al.,[2006; L1 and Gaol 2004} |Wilson et al., 2010). Here, we consider a
es  broad scope of size effects that can increase, decrease or not change the growth of heterogeneous organisms.

64 Previous studies have shown that cellular interactions can change reproductive modes (Kaiser, [2001} [Solari
es fet al.,2013;|Ratcliff et al.,|2012). For example, a new phenotype with a higher death rate leads to a reproductive
e mode of producing propagules among yeast Saccharomyces cerevisiae (Ratcliff et al.,|2012). Phenotypically
&7 heterogeneous organisms could feature diverse cellular interaction forms. Here we study cellular interaction
es that depends on a minimum threshold of a specific phenotype of an organism. This cellular interaction form has
es frequently been observed in nature. For example, in response to nitrogen depletion, cyanobacteria differentiate
70 one heterocyst per 10 to 20 vegetative cells (Kumar et al., 2010; [Flores and Herrero, 2010). In the genus Volvox,
71 along with the germ-soma differentiation (Matt and Umen, 2016)), 1 to 20 germ line cells are produced among
72 500 and 42,000 somatic cells (Shelton et al., 2012)).

73 Thus, both size and composition could affect growth in phenotypically heterogeneous multicellular organ-
74 isms. We develop a theoretical model to address the evolution of reproductive strategies considering the effects
75 of size and threshold. The size effects could increase or decrease organism growth, while the organism grows
76 fast when its cell number of a phenotype of interest meets a given threshold. Organisms in a population share
77 one common reproductive strategy. Populations differ in reproductive strategies. Reproductive strategies com-
78 pete with each other via population growth rates. The optimal reproductive strategy maximises the population
7o growth rate. We found that reproductive strategies can co-exist or can dominate others under different condi-

s tions. The uniquely optimal reproductive strategy always produces two offspring units.
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o« 2 Model

&2 We consider multiple populations in which organisms grow and fragment into smaller pieces (see Fig. [TIA).
s3 The organisms in each population have a unique reproductive strategy. For example, for a population with
s« maturity size N = 3, it either has reproductive strategy 1 + 1 + 1 or 2 4 1. In a population with 2 + 1, mature
e organisms with three cells produce a single-celled newborn organism and a two-celled newborn organism. The
s reproductive strategy determines the organism size at which an organism is born and at which size it is mature
&7 and reproduces. For the reproductive strategy n; + ng + --- + nas, newborn organisms have cell number
s n; (¢ = 1,..., M) and maturity size N = Zf\il n;. We assume ny > ng > --- > njs. We consider
s organisms consisting of two cell types: cooperator and defector. This assumption is inspired by the viability
90 investment of organisms for species in the genus Volvox, such as Pandorina, Eudorina, and Pleodorina. At
o1 small organism sizes, every cell invests into viability. However, with an increase in the size of the organism
e some cells gradually decrease their investment into viability (Kirk, 2001} 2005} Matt and Umen| [2016). We refer

93 to the cells contributing to viability as cooperators and the remaining cells as defectors. Newborn organisms
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Figure 1: Illustration of a life cycle and the effects of size and threshold. A. Example of life cycles with maturity size
three. Organisms with different cell compositions at each size stage are illustrated. Two reproductive strategies are shown:
14+ 1+ 1and 2+ 1. In the shaded area, we show the probabilities of producing different newborn organisms from the
mature organism (2,1) under 1 + 1 4+ 1 and 2 + 1, respectively (see Appendix for the calculation). B. The organism
size n affects the growth time of organisms. The grey dots show the neutral condition, where organisms of all sizes have the
same growth rate. C. Threshold effects on the growth time of organisms. In an organism when the number of cooperators
nc exceeds the contribution threshold k£, the threshold component of growth time ¢, decreases as in a volunteer dilemma
game, see main text. D. An example of a population’s newborn organisms and their payoffs under threshold effects. We
show the newborn organisms of the population with reproductive strategy 2 + 1. The maturity size N = 3. The payoff of
each cell in an organism and the average payoffs of organisms are given for & = 2. The expected cell composition describes
an organism’s cell composition at maturity for m < 1. Long-term prospect classifies fast-growing newborn organisms into

“beneficial” and “intermediately beneficial”, see main text.

94 may differ in their size and composition in a population. For example, the population with 2 4 1 has five
s types of newborn organisms: (1,0), (0,1), (2,0), (1,1), and (0,2), where (np,nc) shows the number of
% defectors np and cooperators nc, respectively (see Fig. [ID). Each organism grows incrementally by one cell
o7 at a time. During each increment, a cell is selected to divide, and two daughter cells are produced. Each
98 daughter cell can switch to another phenotype independently with a cell-type switching probability, which is
99 m = 0.01 in our model. After reaching their maturity size /N, organisms reproduce via random fragmentation
100 in terms of organism composition. The probabilities of forming different newborn organisms are calculated in
11 Appendix [5.1] The newborn organism follows the same life cycle, growing from newborn to the mature stage,
w2 see Fig.[TA.

103 We assume that organisms in populations grow independently without density dependence. Thus, popula-
104 tions follow exponential growth (Tuljapurkar and Caswell,|1997). The population growth rate ), depending on
105 the number of offspring and the growth time of organisms (De Roos|, [2008; |Gao et al., 2019), can be calculated
106 as in Appendix Since we assume no cell death, the number of offspring of each organism is constant,
107 depending on its reproductive strategy. For example, with the reproductive strategy 2 + 1, organisms produce
108 two offspring after reproduction. Thus, the population growth rate is determined by the time required for the
100 newborns to mature. We assume that reproduction is instantaneous. The growth time of an organism is then
1o determined by its size and composition as,

N N
o T=>ty=> (ten X tgn) 1)
n=1 n=1

112

s where the ¢, is the cell increment time for the organism growing from size n to (n+1). ¢, and t4, are the size
14 component and the threshold component of ¢,,. Next, we discuss how we model ¢, and t,,.

115 The size component t,, depends on the cell number n of an organism during growth. Under the neutral
e condition t?, = v1In "T'H, the doubling time of the organism size is independent of the organism size (Gao
n7 et al.;|2019). Thus, organisms of all sizes have the same growth rate, see Fig. E]B Without loss of generality, we
ns chose 7 = 1. To analyze size effects beyond the neutral condition, we screen a large number of values of ¢,

119 around the neutral condition (¢,,), see Fig. . We refer to x,, = EO”L as normalised cell increment components,
120 wheren =1,..., N. For x,, = 1, we recover the neutral condition.
121 The threshold component ¢4, depends on the number of cooperators of an organism. An organism grows

122 faster if the number of its cooperators meets a given threshold &, Fig.[TIC. There are many methods to construct
123 such compositional threshold effect. Here we choose a volunteer dilemma game (Diekmann, |1985). Consider
124 an organism consisting of n cells with np defectors and n¢ cooperators. When cooperator number n¢c meets

125 a contribution threshold k, each cell gets a benefit b. Each cooperator pays a cost ¢ and defectors pay no costs
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126 (Fig. Ep),

b ne >k
0 ng <k 2

127

PD(TLc) = {

Pc(nc) = PD(nc) — C.

128

129 The cell payoffs affect the division probability among these two phenotypes, i.e. which cell is more likely to

130 diVide,
nDewPD
pPp =
nDewPD + ncech
131 P (3)
nce’lu C
pbc =
132 npe?fr + noewfe’

113 where pp and p¢ are the division probabilities for defectors and cooperators, respectively, and w is the intensity
134 of selection (Traulsen et al.,[2008)). The threshold component ¢, is determined by the payoff Pp and Pc,

TZDGwPD + ncech -1
135 tqn = . (4)
: np + nc

136

137 To analyze such threshold effects, we will vary the contribution threshold value k.

w 3 Results

w 3.1 The effects of organism sizes on reproductive strategies

140 To focus on size effects, we assume no threshold effect, w = 0. We investigate size effects by perturbing a single
121 normalised cell increment component Y, starting from a fully neutral condition x,, = 1, wheren = 1,...,7
uz  (see Fig. 2JA). If the organisms of a population are going through a perturbed state at size n i.e. ny < n <
13 N = > n,, then its reproductive strategy (n1 + ne + - - - + nyy) deviates from the neutral condition. Since the
144 population growth rate is inversely proportional to growth time, a perturbation is either advantageous (x, < 1,
s A > 1) or disadvantageous (x, > 1, A < 1) for population growth. A reproductive strategy is referred to as
s being promoted (suppressed) when its population growth rate is greater (smaller) than the neutral growth rate
17 1. A single advantageous perturbation (x,, < 1) promotes the reproductive strategy of any population with
s organisms going through the state n of the perturbation, i.e. the strategies satisfying ny; < n < N (Fig.[2B).
1as  The performance of reproductive strategies is unaffected when their populations’ organisms do not go through
150 the size under perturbations, i.e. m < np; or n > N. A single adverse perturbation y,, > 1 suppresses
151 reproductive strategies that satisfy ny; < n < N. Among these affected populations, we found that the
12 reproductive strategy n + 1 is most affected by perturbations at size n. Since the population with reproductive
153 strategy n + 1 contains n-celled newborn organisms, which mature at size n + 1, its growth time depends on
154 Xn. Therefore, under the condition of x,, < 1and x; = 1 (k # n,k = 1,...,7), the reproductive strategy
155 1 4 1 is uniquely optimal. At the same time, the reproductive strategy n + 1 is most suppressed for x,, > 1,
15 see Fig.[2B. Analogous to the reproductive strategy n + 1, the reproductive strategy n + 2 is the second most
157 affected reproductive strategy. Similarly, for the rest of reproductive strategies, their population composition
1ss  determines whether the growth rates are affected or not. The growth rates then determine the performance of
159 reproductive strategies.

160 When we analyzed general size effects which combine single perturbations at different sizes n, we found
161 that the normalised cell increment components determine the optimal reproductive strategies. We observed that

12 the populations of optimal reproductive strategies contain organisms that mostly go through sizes with smaller
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163 Xn. Thisis illustrated in Fig.[2JC and an analytical proof is given in Appendix [5.3|for reproductive strategies with
18« [N < 3. We found that only the binary-splitting reproductive strategy (producing two offspring) can be uniquely
1es  optimal (see Fig.[2D and Appendix [5.4]for the analytical proof). Intuitively, this result is apparent because the
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Figure 2: The binary-splitting reproductive strategies are uniquely optimal under the effects of size. A. A diagram
of perturbations at size n = 3. Grey dots are the conditions for neutral population growth x,, = 1. Blue dots are the
perturbed values at size 3 with different strength. B. The growth rates of populations with different reproductive strategies
under perturbations at size n = 3. The asterisk * shows the unaffected reproductive strategies continue to perform equally
well. C. The distribution of x,, that promote the reproductive strategy 3 + 1 (in blue) among all samples (in grey). x, are
drawn randomly from a uniform distribution, where x, = 0.5,...,1.5. A sequence of [x1, ..., x7| is randomly chosen at
a time and the optimal reproductive strategy for it is identified. Ten thousand such sequences are investigated in total. D.
The frequency of observed optimal reproductive strategies under size effects. F. The reproductive strategies that have been
investigated for the maturity size N < 8. The reproductive strategies highlighted in bold blue letters are the optimal ones
under a single perturbationn =1,...,7.

16 fastest-growing newborn organisms in a population with a multiple-splitting reproductive strategy can always be
17 found in another population with a binary-splitting reproductive strategy. For example, the population growth
18 rate of 2 + 1 4 1 cannot be greater than that of 1 + 1, and 2 + 2 at the same time. Additionally, 1 4 1 is the
e most frequently observed reproductive strategy in binary-splitting reproductive strategies (see Fig.[2D) because
170 1+ 1 is the only reproductive strategy that depends on a single cell increment component 1. Therefore, for a
171 randomly chosen x,, (n = 1,...,7), 1 + 1 has a higher probability to be optimal compared to other strategies.
172 Generally, reproductive strategies have lower chances to be optimal when binary-splitting makes organisms go
172 through many cell increment stages.

3.2 The effects of thresholds on reproductive strategies

175 We assume the size effect to be neutral to investigate threshold effects exclusively: x,, = 1, such that t5, =
e t2,. With a threshold at size k, newborn organisms of a population with cooperator number nc > k have
177 larger payoffs and thus have shorter growth time, see Eq. and Eq. @). The growth of different newborn
178 organisms determines the population growth rate. For example, consider all possible newborn organisms in
7o the population with the reproductive strategy 2 + 1: (1,0), (0,1) (2,0), (1,1) and (0,2), see Fig. [ID. With
180 the contribution threshold & = 2, (0,2) grows fastest as it has two cooperators. (0, 1) is the second-fastest-
181 growing newborn organism as it most likely gains benefits by producing a second cooperator during growth.
12 (1,0), (1,1) and (2,0) grow relatively slow because they are less likely to produce at least two cooperators
18s  during growth. For convenience, we refer to newborn organisms in a population as “beneficial” if nc > k
18« and “intermediate beneficial” if nc < k and np = 0. All other newborn organisms are unlikely to reap the
185 benefits of cooperation. The growth rate of a population depends primarily on its beneficial newborn organisms
16 and secondly on its intermediate beneficial newborn organisms. For a low cell-type switching probability, e.g.
17 m = 0.01, homogeneous newborn organisms are more abundant than heterogeneous ones. In the long run, we
188 expect that populations mostly contain homogeneous newborn organisms.

189 For threshold effects, the uniquely optimal reproductive strategies are binary-splitting at the maximum ma-
o turity size: 4 +4, 5+ 3, 6 + 2 and 7 + 1 (see Fig. BJA). The optimal reproductive strategies can be classified
191 into three categories: multiple optima, symmetric binary-splitting % + % (or % + %) and asymmetric
192 binary-splitting with a k-celled newborn organism (N — k) + k. For k = 1, multiple reproductive strategies are
1ea optimal at the same time, see Fig.[3]A, B, and C. Since every population contains beneficial newborn organisms,
1« the performances of different reproductive strategies are similar. As k increases, the symmetric binary-splitting
15 reproductive strategies % =+ % (or % =+ %) are optimal for 1 < k < %N , see Fig. B. Newborn organ-
196 isms with size equal to or greater than k have growth advantages, thus intuitively % + % and k+ (k+1) should
197 have the same performance in population growth. However, we found that only % + % (or % + %) is op-
1e  timal. The intrinsic composition of the population and the effects of cell-type switching probability m = 0.01
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190 determines the results. To understand the growth advantages of the symmetric binary-splitting reproductive
200 strategies with the maximal maturity size, we take 4 + 4 and 3 + 3 at £ = 3 as an example. For k = 3,
201 the population of 4 + 4 contains the beneficial newborn organisms (1,3) and (0, 4). The population of 3 + 3
202 only contains beneficial newborn organisms (0, 3). When a cell-type switching event happens during growth,
23 (0, 4) reproduces another beneficial newborn organism (1, 3), while (0, 3) reproduces a non-beneficial newborn
204 organism (1,2). Populations with larger maturity sizes are less affected by the cell-type switching probability
205 as they contain multiple types of beneficial newborn organisms. Finally, when %N < k < N, the reproductive
206 strategy (N — k) + k becomes optimal, see Fig. ‘ . When k& > %N , populations can at most have one type
207 of beneficial newborn organism. Next, we explain why the optimal reproductive strategy is (N — k) + k rather
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Figure 3: Binary-splitting reproductive strategies are uniquely optimal for threshold effects with £ > 1. A. The opti-
mal reproductive strategies across contribution threshold k£ (k < 8) and maturity size N (N < 8). The dark brown lines (in
panels A and B) are the boundaries between multiple optimal reproductive strategies (atk = 1), symmetric binary-splitting
reproductive strategies, asymmetric binary-splitting reproductive strategies and the section that the threshold never meet.
The grey dashed lines indicate the parameter space where we investigated the population growth rate of each reproductive
strategy in panel C and D. B. The population growth rates of the optimal reproductive strategies in panel A. The highlighted
parameter set with N = 8 and k = 3 is investigated in more detail in panel E. C. Population growth rates of different
reproductive strategies with N < 6 are shown across different contribution threshold k. D. Population growth rates of
different reproductive strategies under contribution threshold k = 5 are shown across different maturity size N < 8. E.
The growth rates of populations with symmetric binary-splitting reproductive strategy are shown across to varying ratios of
benefit to cost. F. The reproductive strategies that have been investigated for £ < 7 and N < 8. The optimal populations
that appeared in panel A are highlighted in black. The uniquely optimal reproductive strategies under the threshold effect
for k =< 7and N < 8 are highlighted in bold and red. Parameters for all panels w = 0.1, b = 10, ¢ = 1 and m = 0.01.

208 than other reproductive strategies suchas k+1+1---+1and (N —k — 1) + k + 1. Because of N — k < k,
—_———

N—Fk
200 organisms with N — k cells can only form intermediate beneficial newborn organisms —and only when they are

210 pure cooperators. Larger intermediate beneficial newborns grow faster than smaller ones. We take 3 + 1 + 1
21n and 3 + 2 under k£ = 3 as an example. 3 + 1 + 1 has the intermediate beneficial newborn organism (0, 1) and
212 3 + 2 has the intermediate beneficial newborn organism (0, 2). During organism growth, (0, 1) undergoes two
213 cell increment stages with longer time (larger ¢,,, due to negative payoffs, see Eq. () and Eq. (2)), while (0, 2)
212 only undergoes a single one. Thus, a population with the reproductive strategy 3 + 2 grows faster than one with
25 3+ 14+ 1.

216 Population growth rates decrease with increasing k, resulting from reducing the number of beneficial and
217 intermediate beneficial newborn organisms. Especially when £ > N, no reproductive strategies will obtain the
21e benefits of cooperation, and their populations grow slower due to the associated costs, see Fig.[3]A, B. Increasing
219 maturity size N increases population growth rates of the optimal reproductive strategies because the number of
220 beneficial or intermediate beneficial newborn organisms increases. As expected, population growth rates also
221 increase with the benefit to cost ratio, see Fig. , C,D, and E.

22 3.3 The combined effects of organism sizes and thresholds on reproductive strategies

223 Finally, we investigate the optimal reproductive strategies under the size and threshold effects combined. For
224 simplicity, we only consider the size effects in the form of a single perturbation. We found that all binary-
225 splitting reproductive strategies n; + n; can be uniquely optimal, where n; and n; are positive integers, and
26 n; +n; < N (see Fig. [Zl_f]A and B). With the combined effects of size and threshold, we found new optimal
227 binary-splitting reproductive strategies that are not optimal either in the effects of single perturbation only or
228 for thresholds only, including 2 + 2, 3+ 2,4+ 2, 5+ 2, 3+ 3 and 4 + 3. Furthermore, under the beneficial size
220 perturbation, we found n + 1 (n = 1,...,7) can be optimal both at small and large contribution threshold £,
20 see Fig.[dJA and B. This is due to the fact that the threshold effects lead to a similar performance of reproductive
231 strategies either at small k and at large k& (Fig. 3B). Therefore, for combined size and threshold effects, the
232 size effects primarily impact the performance of reproductive strategies, see Fig. C. Consequently, the
233 reproductive strategy n + 1 becomes optimal under an advantageous perturbation, where n = 1,...,7. Newly
23 emerged binary-splitting reproductive strategies have advantages for intermediate contribution thresholds k,
235 suggesting that it is an outcome of the trade-off between the effect of size and threshold. For an adverse size

26 perturbation, we found the reproductive strategy n + 1 cannot be optimal (Fig. dB), because the adverse size
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perturbation leads to poor performance of reproductive strategies that are influenced by the perturbation (see
Fig. 2B and Fig.@D). 7 + 1 is an exception to this rule, as the threshold effect strongly influence it at k = 7.
The optimal reproductive strategies observed are those that can obtain growth benefits from threshold effects
and avoid the disadvantages from the adverse size effect. For example, 3 4+ 3 outcompetes 4 + 4 for k = 2
when size perturbation occurs at n = 7. Both strategies can obtain growth advantages from threshold effects.
However, adverse size perturbation decreases the population growth rate of 4 + 4 but has no impact on 3 + 3.
Thus the performance of reproductive strategies is the outcome of the trade-off between the effects of size and
threshold. Our results suggest that all binary-splitting reproductive strategies can evolve under an appropriate
choice of size effects (at a single size) and threshold effects.
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Figure 4: The binary-splitting reproductive strategies are uniquely optimal under the effects of size with a single
perturbation and threshold. A. Optimal reproductive strategies under the effects of single advantages size perturbations
and thresholds. B. Optimal reproductive strategies under the effects of single adverse size perturbations and thresholds. In
panel A and B, the perturbation only occurs at a single size at a time. The dark brown lines indicate the boundaries of
optimal reproductive strategies observed under a single perturbation, threshold effects and both. Note that 7 4 1 is uniquely
optimal under either a single perturbation or threshold effects. Reproductive strategies are multiple-optimal under the grey
area. The white lines indicate the parameter space where we investigate the population growth rate in panel C and D. C and
D. The population growth rates of reproductive strategies 1 4+ 3 and 3 + 5 under the effects of a size perturbation at n = 3,
threshold and both, respectively. In A and C, x,, = 0.4. In B and D, x, = 1.5. F. The reproductive strategies that have
been investigated for £ < 7 and N < 8. The reproductive strategies in blue are uniquely optimal under the size effect of
a single perturbation. The reproductive strategies in red are uniquely optimal under the threshold effects. The reproductive
strategies in brown are newly emerged uniquely optimal strategies under both a single perturbation and the threshold effect.

Parameters for all panels w = 0.1, b = 10, ¢ = 1, m = 0.01.

« 4 Discussion

247 Numerous reproductive strategies are conceivable for multicellular organisms, but only recently more atten-
24 tion has been paid to the evolution of reproductive strategies (Tarnita et al., 2013} |[Pichugin et al 2017, 2019;
29 |Staps et all 2019} |Gao et al.l 2019; |Pichugin and Traulsenl 2020). Here, we developed a theoretical model
250 considering the effects of size and cell interaction on the evolution of reproductive strategies, impacting or-
251 ganism growth. We considered clonal organisms because of their advantages of purging deleterious mutations
252 and reducing conflicts among cells (Grosberg and Strathmannl [1998| 2007). An alternative way to form mul-
23 ticellular organisms is “coming together”, usually responding to adverse environments (Tarnita et al., 2013
254 |Claessen et al., 2014; Brunet and Kingl 2017; [Amado et al., |2018}; Brunet and King| 2017; |van Gestel and
255 |Wagner}, 2021) — but here we entirely focus on “staying together” instead, which typically leads to groups of
256 identical cells when the probability to switch phenotypes is small. We considered cell interaction in the form
257 of a threshold effect, where organism growth depends on the number of cooperators. We sought the optimal
258 reproductive strategy in terms of the largest growth rate of a population. The normalised cell increment compo-
259 nent x, (n =1,..., N) represents the growth time of each cell division. The valve of x,, and the composition
260 of the population together determine the optimal reproductive strategy. Small ,, increases the growth rate of
261 reproductive strategies. Contrarily, large x,, reduces the growth rate of reproductive strategies. We found that
262 only binary-splitting reproductive strategies (producing two offspring) can be uniquely optimal. Specifically,
263 only the binary-splitting reproductive strategy n + 1 is optimal under a single size perturbation, where n is
264 the size under perturbation, and n = 1,...,7. Under the threshold effect, the contribution threshold and the
265 cell-type switching probability determine optimal reproductive strategy. We found that the uniquely optimal
266 reproductive strategy is the binary-splitting reproductive strategy with maximum maturity size. We found that
267 all binary-splitting reproductive strategies can be uniquely optimal under the combined effects of size with a
268 single perturbation and threshold. Our results show that only the binary-splitting reproductive strategies can
260 be uniquely optimal. Every binary-splitting reproductive strategy can turn into optimal under the effects of
270 single size perturbation and threshold. Thus, it suggests that they can readily evolve multicellularity under the
271 combined effects of size and threshold.

272 Our finding that the uniquely optimal reproductive strategies are binary-splitting ones under the size effects
273 coincides with the results in our previous work (Pichugin et al.,[2017;|Gao et al.,2019). Moreover, we found that
274 the reproductive strategy n + 1 with a bottleneck can be uniquely optimal under either size or threshold effects.
275 The result may indicate a new advantage over the previously investigated benefits of decreasing the mutation
276 load and regulating the cell conflict (Grosberg and Strathmannl |1998; |[Michod and Roze,,[1999)). Our results also
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277 show that multiple reproductive strategies are optimal simultaneously under some special conditions, such as
27 under k = 1. This resonates with the observation that one species can possess several reproductive strategies
279 simultaneously in nature (Angert, |2005; [Flores and Herrerol 2010; [Isaksson et al., [2021}; [Khanna et al., [2021)),
250 such as cyanobacteria, which have reproductive strategies of binary fission, budding and multiple fission. The
231 frequently observed reproductive strategy 1 + 1 among binary-splitting reproductive strategies indicates that
232 1 4 1 is the best reproductive strategy under uncertain size effects.

283 In our model, we chose a flexible impact of size on organism growth. Size could have positive, negative or
234 neutral effects on growth at each cell increment. The model assumption is corresponding to studies concerning
255 size effect on growth (Yamamoto and Shiah, 2010; [Nielsenl 2006} Li et al., 2014} |Wilson et al., 2006; |L1 and
23 |Gaol 2004; Wilson et all 2010). The form of size perturbations used in our work covers a wide range of
257 size functional forms, including those investigated previously (Pichugin et al. 2017, [2019). We delineated
233 the threshold effect of cellular interactions in a multiplayer volunteer game given the utility of game theory in
250 depicting biological interactions ranging from social foraging to cancer development (Maynard Smith and Price,
200 |1973}; [Tomlinson, [1997; |Dugatkin and Reeve, [2000; Nowak and Sigmund, 2004; Nowakl, 2006; |Kaveh et al.,
201 20165 [Wu et al. [2016; McNamara and Leimar, 2020). We use the volunteer’s dilemma primarily to capture
202 the form of cellular interactions (Diekmann, |1985} |Archetti, 2009). Each cell only plays a pure reproductive
293 strategy via its phenotype.

294 We chose the cell-type switching probability m = 0.01, because switching mostly happens under envi-
205 ronmental pressure in nature (Gallon, 1992} |Claessen et al.l 2014). The low switching probability leads to a
206 relatively homogeneous population, which mainly contains homogeneous newborn organisms. If a population
207 has beneficial (or intermediate beneficial) newborn organisms, then homogeneous beneficial (or intermediate
208 beneficial) newborn organisms dominate the population. Although heterogeneous beneficial newborn organ-
209 isms grow fastest, they are not abundant, because such organisms containing one defector and one cooperator

a0 are typically growing into an organism in which there are two defectors.

12
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« 5 Appendix

s 5.1 The probability distribution of newborn organisms

a3 We show the calculation of the probabilities of producing different types of newborn organisms from a mature
304 organism (np,nc), where np + ne = N. The probability to produce the newborn organism type (n’,, )
ws  (np +ne < N)is calculated by
() (2)
Plnfynty) = ﬁ ®)
np+ng

ws  We take the mature organism (1,2) in a population with reproductive strategy 2 4+ 1 as an example. The are
a7 five newborn organisms: (1,0), (0,1), (2,0), (1,1) and (0, 2). The probability of reproducing each newborn
s08  organism is shown in Fig.[3]

<©+®
& O+ @

Figure 5: The probability of producing each newborn organism from the mature organism (1, 2) in the population

Wl o Wl =

with reproductive strategy 2 + 1. The organism (1, 2) has the probability of % to produce a newborn organism containing
one defector and a newborn organism containing two cooperators. It has the probability of % to produce a newborn organism
containing one cooperator and a newborn organism containing one cooperator and one defector. However, for small m mixed

mature groups occur only in small frequency.

ws 5.2 Population growth rate

a0 We illustrate the calculation of population growth rates. For the reproductive strategy ni + ng + - - - + nps with
311 maturity size [N, its population consists of newborn organisms with size n;, where: = 1,... , M,0<n; < N
sz and Zﬁl n; = N. As we consider two cell types, cooperator and defector, an organism with size n; can
a3 have 0,1, ...,n; cooperators. Therefore, a newborn organism with n; cells has n; 4 1 possible compositions.
ata We denote the number of newborn organism types of a population by €. For example, a population with
a5 reproductive strategy 2 + 1 can contain the newborn organisms (1,0), (0,1), (2,0), (1,1) and (0, 2). Here,
sis we would have N = 3, n; = 1, np = 2, M = 2 and Q = 5 (see Fig. [D). The population growth rate
sz depends on the growth rate of the newborn organisms. We assume that a population contains each type of
a8 newborn organisms initially. We track each newborn organism’s growth time and the number of its offspring.
sie We use T, to denote the growth time of a ¢ type newborn organism until it produces a j type newborn organism,
20 where ¢,7 = 1,...,8. We use IV;; to denote the number of offspring of type j offspring produced by the ¢
;21 type newborn organism. The growth time T;; depends on the organism size and the organism composition
22 via Eq. (I). The number of newborn organism N;; depends on the cell-type switching probability and the
s cell division probabilities of each cell type. Since organism growth is stochastic, T;; and N;; are different for
a2+ different stochastic trajectories, see (Gao et al.,|2019). For example, for the strategy 1+ 1, the newborn organism
a5 (0,1) could produce two (1,0), one (1,0) or zero (1,0) with different growth time. To capture the different

a6 development trajectories, we simulate the stochastic organism growth and average over Z replicates. Then the
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327 population growth rate is the largest root of the equation
det(Aga(\) —I) =0, (6)

Z, 5 ATE

s where Aggq is a {2 by Q matrix with elements a;; = ;1\/7%& (De Roos, 2008 |Gao et al., [2019). Here,
20 T35 and N7 are the growth time and the number of offspring of the newborn organism of size ¢ producing an j
a0 organism in zth replication.

331 The simulation of a population starts with newborn organisms. The newborn organisms differ in their
s composition, i.e. they have different (np, n¢). For example, for the reproductive strategy 1 + 1, the newborn
ss  organisms are of type (1,0) and (0,1). Organisms grow in the following way: In each single step, a cell
we  (cooperator or defector) is selected to divide with its division probability, see Eq. (3). The threshold component

nDewPD +ncewPC -
np+nc
a6 tsn X tgn, where we assign values to ¢, according to different scenarios. With the cell division, two daughter

a5 Of growth time is t4, = ( ' based on Eq. (@) . The increment time for the single step is
a7 cells are produced. Each daughter cell switches to another cell type with a probability m. After a single step,
s we update the number of cooperators and defectors of the organism. Then, the organism repeats the above
sss  procedure to grow until reaching its maturity size. Organisms at maturity size produce offspring by random
a0 fragmentation. The probability of producing each newborn organism is calculated by Eq. (3) in Appendix [5.1]
a1 We obtain the number of offspring produced by the newborn organisms and the growth time (the sum of all
a2 time increments) in a single run. We make 5000 replicates of the life cycle of each newborn organism. In

s the zth replication, we record the growth time 775 and the number of offspring N5 for the j type newborn

. . . . Z_ N,vz,-efkTizj
s4a organism producing the 7 type newborn organism. Thus, we have a;; = =*=————, where Z = 5000

a5 for our simulations. We numerically recover our analytical results for maturity size N < 3, see Appendix
ass  For N < 3, we show that that only the binary-splitting reproductive strategies are uniquely optimal under size

a7 effects only in Appendix[5.4] Our remaining conclusions are reached by numerical simulations.

«s 5.3 Analytical proof that smaller y, determines the optimal reproductive strategy
349 when N S 3

sso  For N < 3, there are only three reproductive strategies: 1 + 1, 1 + 1+ 1 and 2 4 1. The optimal reproductive
a5t strategy is determined by the perturbation with the smaller x,,. More precisely, the reproductive strategy 141 is
32 optimal when y1 < x2 (advantageous perturbation at » = 1) and 2+ 1 is optimal when x1 > 2 (advantageous
sss perturbationatn = 2). 14+ 1,1+ 14 1 and 2 4 1 are optimal when x; = x2. The population growth rate of
s« each reproductive strategy is denoted by a subscript. For example, A1, describes the population growth rate of
a5 the reproductive strategy 1 + 1. The three population growth rates A\j41, A14+141, and Ao can be calculated
6 by finding the largest eigenvalue of matrix A in Eq. (6) in Appendix[5.2] We obtain

In2 1
Mpr=—p7 = — @)
Xitd X1
In3
by N 8
S X1td + Xatds ®)
0= e—>\1+2(X1t21+X2t32) + e—>\1+2X2t22 —1, )

7 where t?, = In % and n = 1, 2. Eq. (9) only provides an implicit solution for Ao 1. The population growth
sss  rate is always positive, as there is no cell death in our model setting.

We first focus on x; < x2 and prove that the reproductive strategy 1 + 1 leads to faster growth than either

14
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1+1+10r2+1.Westartbycomparing1+1with1+1+lfor% <1,

In2
A1+1 _ X1 1n2
In3
x11n24+x2In %

)\1+1+1

1 th’l2+X21n%
71113 X1

1 Xo. 3 (10)
=—(In2+=In_
1113(n +X1 n2>

1 3
— | In2+1In—
” 3 (n o 2)
=1.
Thus A1 > A14141 for x1 < xa2: The reproductive strategy 1 + 1 leads to faster population growth than the

reproductive strategy 1 + 1 + 1.
Next we prove that A1 11 > Ag41 for x1 < x2 by contradiction. If we would have o471 > A1 = i, then

0 = ettt (Gt +x2t0) 4 g=Aepaxatdy _
— e—A2+1(X1 In24x2In %) + e—)\1+2X2 ln% -1

—In2—X241x21n % 4 e—AlJrQXg 111% -1

<e
_ %e—AHle ng 4
=56
This can be simplified to (%)/\24’”(2 > 2 and implies Ap41x2 < 1 or
1 1
Aoyl < - < o = Aiq1.
which contradicts the assumption of Aoy > Ay = i Thus Aj41 > Aoy for x1 < x2. Thus the

reproductive strategy 1 + 1 is optimal under x1 < xo2.

Now we focus on x; > X2 and prove that the reproductive strategy 2 + 1 leads to faster growth than either
14+1orl+1+1. Wefirst compare 1 +1to 1+ 1+ 1. Since % < 1, we can revert the argument in Eq. (T0)
and obtain Ay 4141 > Ajy1.

Next we prove — again by contradiction — that Aoyq > Aj4141 for x1 > xo. If we would have \oy; <

In3
n -, then

Al4141 = Mm2tam?

0 = e r2+10xatd+x2tdy) + e~ A241X2tly

— 67>\2+1(X1 In2+x21In %) + 67A2+1X2 ln% _ 1

> 67 In3 + 67}\2+1X2 ln% _ 1

B 2 A2+1X2 9
—\3 3

))\1+2X2

This can be simplified to (% < % and implies A 42x2 > 1 or

1
A > —.
2 X2
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On the other hand, we have for x; > x2

In3
Aly141 = a2+ xand M (11)
In3
Xatg; + Xatl

!

=2
ss  which implies Aoy1 > A14141 > A141. Thus the reproductive strategy 2 4 1 is optimal for x; > x2.
367 The optimal reproductive strategy under a single size perturbation in the main text is the special case of

ss X1 = 1 or xo = 1. Thus, binary-splitting strategies are optimal for N < 3. Only for x; = X2, all three
sss reproductive strategies of 1 + 1, 1 + 1 + 1 and 2 + 1 have the same growth rate % Thus, we have proven
a0 that the smaller x,, determines the optimal strategy. In addition, we found the optimal strategy is either 1 + 1
ann or 2 + 1, which is consistent with the results that binary-splitting reproductive strategies are optimal under size
a2 effects, see Appendix [5.4]

as 5.4 Only the binary-splitting reproductive strategies can be the optimal one under size
o7 effects

ars  For size effects only, the number of newborn organism types is reduced as the cell composition does not impact
are  the population growth rate. For example, a population with reproductive strategy 2 + 1 has only two types of
a7 newborn organisms: single-celled organisms and two-celled organisms. For the reproductive strategy ni +ns +
ars -+ ny With N = Ef\il n;, the number of newborn organism types (2 is smaller or qual to M (since n; may
srs  be equal to n;). Therefore, Eq. @ is reduces to

N167>\T1 —1 N167>\T2 s NleiATQ
NQGiATl NQGiATz -1 - NQGiATQ
—0. (12)
NQGiATl Ngzei/\Tz cee Ngei)‘TQ -1

a0 Next, we simplify the determinant on the left hand size of Eq. by changes lines 2 to 2. We multiply the
st first row by %1 and subtract the result from the ith row, where i € [2, 2]. We obtain

N1€_>\T1 -1 Z\/Vle_AT2 s 1\718_>\TSZ
Ny -1 . 0
M =0. (13)
%flz 0 e -1
sz Then we multiply the ith column by xl and add it to the first column, where i € [2, §2]. We find
Z?:l Nie i =1 Nye 2z ... Nje e
0 -1 e 0
) =0. (14)
0 0 -1
a3 We finally obtain
Q
> NieM—1=0, (15)
i=1
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s where i € [1,0)]. Since newborn organisms produce identical offspring, N; is the number of the ith type
a5 offspring. For example, each organism produces 2 single-celled newborn organisms (the first type) and a two-
sse  celled newborn organism (the second type) under 1 + 1 4 2. Thus N; = 2 and N» = 1. Thus, Eq. can be
a7 written in the following equation

D e —1=0, (16)

ass  Where T),, is the growth time for an organism from newborn size n; to its maturity size N.

389 To prove that only binary-spitting reproductive strategies can be uniquely optimal, we use a similar method
aso  to (Pichugin and Traulsenl [2020). We choose three reproductive strategies S1 = ny + ng + -+ + nyg, So =
a1 (N1 +ng)+ -+ ny and S3 = ny + ng, where N = Zf\il n;. We use A1, Ao, and A3 to denote the growth

sz rates of S1,S2 and S3, respectively. The growth rates can be calculated as roots of the equations

N
fi(\) = e Monn 4 e A a4 Ze—kTm,N) —1=0 a7
i=3
393
N
f2(A) = e M matnan 4 Z e MmN —_1=0 (18)
i=3
394
f3()\) — €7>‘T(nl.nl+n2) + efAT(nz,nl#»nz) — 1= O (19)

ass  Since the growth time 7" is positive, thus the above equations are monotonically decreasing functions. We
e multiply Eq. (T9) by e *i+n2.8) . Since T,y + T(y.2) = T(a,2), We get

fi) = e Mo g7 Mg — oA T(natnaN) = (), (20)

sz Thus, f1(A) = fa(A) + f4(\) = 0. Hence, we have either \y = A2 = A3, fa(A1) > 0 > fi(A1)or fa(A1) <
s 0< fi(A1) at M. If fa(A1) < Oand f5(A1) > 0, we get A2 < A1 < Az. If fo(A1) > 0and f5(A\1) < 0, we get
s A3 < A1 < Ag. Thus, uniquely optimal reproductive strategies are always the binary-splitting ones.
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